Source code for torchbearer.callbacks.torch_scheduler

import functools
import warnings

import torch

import torchbearer
from torchbearer.bases import get_metric, _pytorch_version_lt, _pytorch_version_gt
from torchbearer.callbacks import Callback


[docs] class TorchScheduler(Callback): def __init__(self, scheduler_builder, monitor=None, step_on_batch=False): self._scheduler_builder = scheduler_builder self._monitor = monitor self._scheduler = None self._step_on_batch = step_on_batch self._newstyle = not _pytorch_version_lt("1.1.0") def _step(self, state, current=None): if state[torchbearer.MODEL].training is False: return if self._newstyle or self._step_on_batch: if current is None: self._scheduler.step() else: self._scheduler.step(current) else: if current is None: self._scheduler.step(epoch=state[torchbearer.EPOCH]) else: self._scheduler.step(current, epoch=state[torchbearer.EPOCH])
[docs] def on_start(self, state): try: self._scheduler = self._scheduler_builder(state[torchbearer.OPTIMIZER], last_epoch=state[torchbearer.EPOCH] - 1) except TypeError: self._scheduler = self._scheduler_builder(state[torchbearer.OPTIMIZER]) if state[torchbearer.EPOCH] > 0 and self._step_on_batch: warnings.warn('Resuming schedulers with the `step_on_batch` option is not currently supported and may cause' ' unexpected behaviour.')
[docs] def on_sample(self, state): if not self._newstyle and self._step_on_batch and self._monitor is None: self._step(state)
[docs] def on_step_training(self, state): if self._step_on_batch: if self._monitor is not None: current = get_metric('Scheduler', state, self._monitor) if current is None: return self._step(state, current) elif self._newstyle: self._step(state)
[docs] def on_start_training(self, state): if not self._newstyle and not self._step_on_batch and self._monitor is None: self._step(state)
[docs] def on_end_epoch(self, state): if not self._step_on_batch: if self._monitor is not None: current = get_metric('Scheduler', state, self._monitor) if current is None: return self._step(state, current) else: self._step(state)
[docs] class LambdaLR(TorchScheduler): """ Example: :: >>> from torchbearer import Trial >>> from torchbearer.callbacks import LambdaLR # Example Trial which performs the two learning rate lambdas from the PyTorch docs >>> lambda1 = lambda epoch: epoch // 30 >>> lambda2 = lambda epoch: 0.95 ** epoch >>> scheduler = LambdaLR(lr_lambda=[lambda1, lambda2]) >>> trial = Trial(None, callbacks=[scheduler], metrics=['loss'], verbose=2).for_steps(10).run(1) Args: step_on_batch (bool): If True, step will be called on each training iteration rather than on each epoch See: `PyTorch LambdaLR <http://pytorch.org/docs/master/optim.html#torch.optim.lr_scheduler.LambdaLR>`_ """ def __init__(self, lr_lambda, step_on_batch=False): super(LambdaLR, self).__init__(functools.partial(torch.optim.lr_scheduler.LambdaLR, lr_lambda=lr_lambda), step_on_batch=step_on_batch)
[docs] class StepLR(TorchScheduler): """ Example: :: >>> from torchbearer import Trial >>> from torchbearer.callbacks import StepLR >>> # Assuming optimizer uses lr = 0.05 for all groups >>> # lr = 0.05 if epoch < 30 >>> # lr = 0.005 if 30 <= epoch < 60 >>> # lr = 0.0005 if 60 <= epoch < 90 >>> scheduler = StepLR(step_size=30, gamma=0.1) >>> trial = Trial(None, callbacks=[scheduler], metrics=['loss'], verbose=2).for_steps(10).run(1) Args: step_on_batch (bool): If True, step will be called on each training iteration rather than on each epoch See: `PyTorch StepLR <http://pytorch.org/docs/master/optim.html#torch.optim.lr_scheduler.StepLR>`_ """ def __init__(self, step_size, gamma=0.1, step_on_batch=False): super(StepLR, self).__init__(functools.partial(torch.optim.lr_scheduler.StepLR, step_size=step_size, gamma=gamma), step_on_batch=step_on_batch)
[docs] class MultiStepLR(TorchScheduler): """ Example: :: >>> from torchbearer import Trial >>> from torchbearer.callbacks import MultiStepLR >>> # Assuming optimizer uses lr = 0.05 for all groups >>> # lr = 0.05 if epoch < 30 >>> # lr = 0.005 if 30 <= epoch < 80 >>> # lr = 0.0005 if epoch >= 80 >>> scheduler = MultiStepLR(milestones=[30,80], gamma=0.1) >>> trial = Trial(None, callbacks=[scheduler], metrics=['loss'], verbose=2).for_steps(10).run(1) Args: step_on_batch (bool): If True, step will be called on each training iteration rather than on each epoch See: `PyTorch MultiStepLR <http://pytorch.org/docs/master/optim.html#torch.optim.lr_scheduler.MultiStepLR>`_ """ def __init__(self, milestones, gamma=0.1, step_on_batch=False): super(MultiStepLR, self).__init__(functools.partial(torch.optim.lr_scheduler.MultiStepLR, milestones=milestones, gamma=gamma), step_on_batch=step_on_batch)
[docs] class ExponentialLR(TorchScheduler): """ Example: :: >>> from torchbearer import Trial >>> from torchbearer.callbacks import ExponentialLR >>> # Example scheduler which multiplies the learning rate by 0.1 every epoch >>> scheduler = ExponentialLR(gamma=0.1) >>> trial = Trial(None, callbacks=[scheduler], metrics=['loss'], verbose=2).for_steps(10).run(1) Args: step_on_batch (bool): If True, step will be called on each training iteration rather than on each epoch See: `PyTorch ExponentialLR <http://pytorch.org/docs/master/optim.html#torch.optim.lr_scheduler.ExponentialLR>`_ """ def __init__(self, gamma, step_on_batch=False): super(ExponentialLR, self).__init__(functools.partial(torch.optim.lr_scheduler.ExponentialLR, gamma=gamma), step_on_batch=step_on_batch)
[docs] class CosineAnnealingLR(TorchScheduler): """ Example: :: >>> from torchbearer import Trial >>> from torchbearer.callbacks import CosineAnnealingLR >>> # Example scheduler which uses cosine learning rate annealing - see PyTorch docs >>> scheduler = MultiStepLR(milestones=[30,80], gamma=0.1) >>> trial = Trial(None, callbacks=[scheduler], metrics=['loss'], verbose=2).for_steps(10).run(1) Args: step_on_batch (bool): If True, step will be called on each training iteration rather than on each epoch See: `PyTorch CosineAnnealingLR <http://pytorch.org/docs/master/optim.html#torch.optim.lr_scheduler.CosineAnnealingLR>`_ """ def __init__(self, T_max, eta_min=0, step_on_batch=False): super(CosineAnnealingLR, self).__init__(functools.partial(torch.optim.lr_scheduler.CosineAnnealingLR, T_max=T_max, eta_min=eta_min), step_on_batch=step_on_batch)
[docs] class ReduceLROnPlateau(TorchScheduler): """ Example: :: >>> from torchbearer import Trial >>> from torchbearer.callbacks import ReduceLROnPlateau >>> # Example scheduler which divides the learning rate by 10 on plateaus of 5 epochs without significant >>> # validation loss decrease, in order to stop overshooting the local minima. new_lr = lr * factor >>> scheduler = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5) >>> trial = Trial(None, callbacks=[scheduler], metrics=['loss'], verbose=2).for_steps(10).for_val_steps(10).run(1) Args: monitor (str): The name of the quantity in metrics to monitor. (Default value = 'val_loss') step_on_batch (bool): If True, step will be called on each training iteration rather than on each epoch See: `PyTorch ReduceLROnPlateau <http://pytorch.org/docs/master/optim.html#torch.optim.lr_scheduler.ReduceLROnPlateau>`_ """ def __init__(self, monitor='val_loss', mode='min', factor=0.1, patience=10, verbose=False, threshold=1e-4, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-8, step_on_batch=False): super(ReduceLROnPlateau, self).__init__(functools.partial(torch.optim.lr_scheduler.ReduceLROnPlateau, mode=mode, factor=factor, patience=patience, verbose=verbose, threshold=threshold, threshold_mode=threshold_mode, cooldown=cooldown, min_lr=min_lr, eps=eps), monitor=monitor, step_on_batch=step_on_batch)
[docs] class CyclicLR(TorchScheduler): """ Example: :: >>> from torchbearer import Trial >>> from torchbearer.callbacks import CyclicLR >>> # Example scheduler which cycles the learning rate between 0.01 and 0.1 >>> scheduler = CyclicLR(0.01, 0.1) >>> trial = Trial(None, callbacks=[scheduler], metrics=['loss'], verbose=2).for_steps(10).for_val_steps(10).run(1) Args: monitor (str): The name of the quantity in metrics to monitor. (Default value = 'val_loss') step_on_batch (bool): If True, step will be called on each training iteration rather than on each epoch See: `PyTorch ReduceLROnPlateau <http://pytorch.org/docs/master/optim.html#torch.optim.lr_scheduler.ReduceLROnPlateau>`_ """ def __init__(self, base_lr, max_lr, monitor='val_loss', step_size_up=2000, step_size_down=None, mode='triangular', gamma=1., scale_fn=None, scale_mode='cycle', cycle_momentum=True, base_momentum=0.8, max_momentum=0.9, step_on_batch=False): if _pytorch_version_gt("1.0.0"): # CyclicLR is implemented super(CyclicLR, self).__init__(functools.partial(torch.optim.lr_scheduler.CyclicLR, base_lr=base_lr, max_lr=max_lr, step_size_up=step_size_up, step_size_down=step_size_down, mode=mode, gamma=gamma, scale_fn=scale_fn, scale_mode=scale_mode, cycle_momentum=cycle_momentum, base_momentum=base_momentum, max_momentum=max_momentum), monitor=monitor, step_on_batch=step_on_batch) else: raise NotImplementedError('CyclicLR scheduler was not implemented in PyTorch versions less than 1.1.0. ' 'Update PyTorch or use the CyclicLR callback from an older Torchbearer version.')