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CHAPTER 1

Using DistributedDataParallel with Torchbearer on CPU

This note will quickly cover how we can use torchbearer to train over multiple nodes. We shall do this by training
a simple model to classify and for a massive amount of overkill we will be doing this on MNIST. Most of the code
for this example is based off the Distributed Data Parallel (DDP) tutorial and the imagenet example from the PyTorch
docs. We recommend you read at least the DDP tutorial before continuing with this note.

1.1 Setup, Cleanup and Model

We keep similar setup, cleanup and model from the DDP tutorial. All that is changed is taking rank, world size and
master address from terminal arguments and changing the model to apply to MNIST. Note that we are keeping to the
GLOO backend since this part of the note will be purely on the CPU.

def setup():

def

os.environ[ "MASTER_ADDR'] args.master
os.environ['MASTER_PORT'] = '29500"

# initialize the process group
dist.init_process_group("gloo", rank=args.rank, world_size=args.world_size)

# Explicitly setting seed makes sure that models created in two processes
# start from same random weights and biases. Alternatively, sync models

# on start with the callback below.

#torch.manual_seed (42)

cleanup () :
dist.destroy_process_group ()

class ToyModel (nn.Module) :

def _ init_ (self):
super (ToyModel, self).__init__ ()
self.netl = nn.Linear (784, 100)

(continues on next page)
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self.relu = nn.ReLU()
self.net2 nn.Linear (100, 10)

def forward(self, x):
return self.net2 (self.relu(self.netl(x)))

1.2 Sync Methods

Since we are working across multiple machines we need a way to synchronise the model itself and its gradients. To
do this we utilise methods similar to that of the distributed applications tutorial from PyTorch.

def sync_model (model) :
size = float (dist.get_world_size())
for param in model.parameters () :
dist.all_reduce (param.data, op=dist.ReduceOp.SUM)
param.data /= size

def average_gradients (model) :
size = float (dist.get_world_size())
for param in model.parameters() :
dist.all_reduce (param.grad.data, op=dist.ReduceOp.SUM)
param.grad.data /= size

Since we require the gradients to be synced every step we implement both of these methods as Torchbearer callbacks.
We sync the model itself on init and sync the gradients every step after the backward call.

@torchbearer.callbacks.on_init
def sync(state):
sync_model (state[torchbearer .MODEL])

@torchbearer.callbacks.on_backward
def grad(state):
average_gradients (state[torchbearer . MODEL])

1.3 Worker Function

Now we need to define the main worker function that each process will be running. We need this to setup the environ-
ment, actually run the training process and cleanup the environment after we finish. This function outside of calling
setup and cleanup is exactly the same as any Torchbearer training function.

def worker () :
setup ()
print ("Rank and node: —{}".format (args.rank, platform.node()))

model = ToyModel () .to('cpu')
ddp_model = DDP (model)

kwargs = {}

(continues on next page)
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ds = datasets.MNIST('./data/mnist/', train=True, download=True,
transform=transforms.Compose ([
transforms.ToTensor (),
transforms.Normalize ((0.1307,), (0.3081,))
1))

train_sampler = torch.utils.data.distributed.DistributedSampler (ds)
train_loader = torch.utils.data.DatalLoader (ds,
batch_size=128, sampler=train_sampler, =*xkwargs)

test_ds = datasets.MNIST('./data/mnist', train=False,
transform=transforms.Compose ([
transforms.ToTensor (),
transforms.Normalize ((0.1307,), (0.3081,))
1)
test_sampler = torch.utils.data.distributed.DistributedSampler (test_ds)
test_loader = torch.utils.data.DatalLoader (test_ds,
batch_size=128, sampler=test_sampler, **xkwargs)

loss_fn = nn.CrossEntropyLoss ()
optimizer = optim.SGD (ddp_model.parameters(), 1lr=0.001)

trial = torchbearer.Trial (ddp_model, optimizer, loss_fn, metrics=['loss', 'acc'],
callbacks=[sync, grad, flatten])

trial.with_train_generator (train_loader)

trial.run (10, verbose=2)

print ("Model hash: ".format (hash (model)))
print ('First parameter: '.format (next (model.parameters())))
cleanup ()

You might have noticed that we had an extra flatten callback in the Trial, the only purpose of this was to flatten each
image.

@torchbearer.callbacks.on_sample
def flatten (state):

state[torchbearer.X] = state[torchbearer.X].view(state[torchbearer.X].shapel[0], -
1)

1.4 Running

All we need to do now is write a __main__ function to run the worker function.

if name == "_ _main__ ":

worker ()
print ('done')

We can then ssh into each node on which we want to run the training and run the following code replacing i with the
rank of each process.

python distributed_data_parallel.py —--world-size 2 —--rank i —--host (host address)

1.4. Running 3
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1.5 Running on machines with GPUs

Coming soon.

1.6 Source Code

The source code for this example is given below:

Download Python source code: distributed_data_parallel.py

4 Chapter 1. Using DistributedDataParallel with Torchbearer on CPU



CHAPTER 2

Using the Metric API

There are a few levels of complexity to the metric API. You’ve probably already seen keys such as ‘acc’ and ‘loss’
can be used to reference pre-built metrics, so we’ll have a look at how these get mapped ‘under the hood’. We’ll also
take a look at how the metric decorator APT can be used to construct powerful metrics which report running and
terminal statistics. Finally, we’ll take a closer look at the MetricTree and MetricList which make all of this
happen internally.

2.1 Default Keys

In typical usage of torchbearer, we rarely interface directly with the metric API, instead just providing keys
to the Model such as ‘acc’ and ‘loss’. These keys are managed in a dict maintained by the decorator
default_for key (key). Inside the torchbearer model, metrics are stored in an instance of MetricList,
which is a wrapper that calls each metric in turn, collecting the results in a dict. If MetricList is given a string,
it will look up the metric in the default metrics dict and use that instead. If you have defined a class that implements
Met ric and simply want to refer to it with a key, decorate it with default_for _key ().

2.2 Metric Decorators

Now that we have explained some of the basic aspects of the metric API, lets have a look at an example:

@default_for_key('binary_accuracy')
@default_for_key('binary_acc')
@running_mean

@mean

class BinaryAccuracy (Metric):

This is the definition of the default accuracy metric in torchbearer, let’s break it down.

mean (), std() and running_mean () are all decorators which collect statistics about the underlying metric.
CategoricalAccuracy simply returns a boolean tensor with an entry for each item in a batch. The mean () and
std () decorators will take a mean / standard deviation value over the whole epoch (by keeping a sum and a number
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of values). The running_mean () will collect a rolling mean for a given window size. That is, the running mean is
only computed over the last 50 batches by default (however, this can be changed to suit your needs). Running metrics
also have a step size, designed to reduce the need for constant computation when not a lot is changing. The default
value of 10 means that the running mean is only updated every 10 batches.

Finally, the default_for_key () decorator is used to bind the metric to the keys ‘acc’ and ‘accuracy’.

2.2.1 Lambda Metrics

One decorator we haven’t covered is the lambda_metric (). This decorator allows you to decorate a function
instead of a class. Here’s another possible definition of the accuracy metric which uses a function:

@metrics.default_for_key('acc')
@metrics.running mean
@metrics.std
@metrics.mean
@metrics.lambda_metric('acc', on_epoch=False)
def categorical_accuracy(y_pred, y_true):

_, y_pred = torch.max(y_pred, 1)

return (y_pred == y_true).float()

The 1ambda_metric () here converts the function into a MetricFactory. This can then be used in the normal
way. By default and in our example, the lambda metric will execute the function with each batch of output (y_pred,
y_true). If we set on_epoch=True, the decorator will use an EpochLambda instead of a BatchLambda. The
EpochLambda collects the data over a whole epoch and then executes the metric at the end.

2.2.2 Metric Output - to_dict

At the root level, torchbearer expects metrics to output a dictionary which maps the metric name to the value. Clearly,
this is not done in our accuracy function above as the aggregators expect input as numbers / tensors instead of dic-
tionaries. We could change this and just have everything return a dictionary but then we would be unable to tell the
difference between metrics we wish to display / log and intermediate stages (like the tensor output in our example
above). Instead then, we have the to_dict () decorator. This decorator is used to wrap the output of a metric in a
dictionary so that it will be picked up by the loggers. The aggregators all do this internally (with ‘running_’, ‘_std’,
etc. added to the name) so there’s no need there, however, in case you have a metric that outputs precisely the correct
value, the to_dict () decorator can make things a little easier.

2.3 Data Flow - The Metric Tree

Ok, so we’ve covered the decorator APT and have seen how to implement all but the most complex metrics
in torchbearer. Each of the decorators described above can be easily associated with one of the metric aggregator
or wrapper classes so we won’t go into that any further. Instead we’ll just briefly explain the MetricTree. The
MetricTree is a very simple tree implementation which has a root and some children. Each child could be another
tree and so this supports trees of arbitrary depth. The main motivation of the metric tree is to co-ordinate data flow
from some root metric (like our accuracy above) to a series of leaves (mean, std, etc.). When Metric.process ()
is called on a Met ricTree, the output of the call from the root is given to each of the children in turn. The results
from the children are then collected in a dictionary. The main reason for including this was to enable encapsulation
of the different statistics without each one needing to compute the underlying metric individually. In theory the
MetricTree means that vastly complex metrics could be computed for specific use cases, although I can’t think of
any right now. ..

6 Chapter 2. Using the Metric API




CHAPTER 3

Using the Tensorboard Callback

In this note we will cover the use of the TensorBoard callback. This is one of three callbacks in torchbearer
which use the TensorboardX library. The PyPi version of tensorboardX (1.4) is somewhat outdated at the time of
writing so it may be worth installing from source if some of the examples don’t run correctly:

pip install git+https://github.com/lanpa/tensorboardX

The TensorBoard callback is simply used to log metric values (and optionally a model graph) to tensorboard.
Let’s have a look at some examples.

3.1 Setup

We’ll begin with the data and simple model from our quickstart example.

BATCH_SIZE = 128

normalize = transforms.Normalize (mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])

dataset = torchvision.datasets.CIFAR1O (root='./data/cifar', train=True, download=True,
transform=transforms.Compose ([transforms.

—~ToTensor (), normalizel]))

splitter = DatasetValidationSplitter (len(dataset), 0.1)

trainset = splitter.get_train_dataset (dataset)

valset = splitter.get_val_dataset (dataset)

traingen = torch.utils.data.Dataloader (trainset, pin_memory=True, batch_size=BATCH_
—SIZE, shuffle=True, num_workers=10)

valgen = torch.utils.data.Dataloader (valset, pin_memory=True, batch_size=BATCH_SIZE,
—shuffle=True, num_workers=10)

testset = torchvision.datasets.CIFAR1O0 (root="'./data/cifar', train=False,

—dowrntoad=True; (continues on next page)
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transform=transforms.Compose ([transforms.
—ToTensor (), normalize]))
testgen = torch.utils.data.Dataloader (testset, pin_memory=True, batch_size=BATCH_SIZE,
— shuffle=False, num_workers=10)

class SimpleModel (nn.Module) :
def _ init__ (self):

super (SimpleModel, self).__init__ ()

self.convs = nn.Sequential (
nn.Conv2d (3, 16, stride=2, kernel_size=3),
nn.BatchNorm2d (16),
nn.RelLU(),
nn.Conv2d (16, 32, stride=2, kernel_size=3),
nn.BatchNorm2d (32),
nn.RelLU(),
nn.Conv2d (32, 64, stride=2, kernel_size=3),
nn.BatchNorm2d (64),
nn.RelLU ()

self.classifier = nn.Linear (576, 10)
def forward(self, x):
x = self.convs (x)

x = x.view (-1, 576)
return self.classifier (x)

model = SimpleModel ()

optimizer = optim.Adam(filter (lambda p: p.requires_grad, model.parameters()), lr=0.
—001)
loss = nn.CrossEntropyLoss ()

The callback has three capabilities that we will demonstrate in this guide:
1. It can log a graph of the model
2. It can log the batch metrics

3. It can log the epoch metrics

3.2 Logging the Model Graph

One of the advantages of PyTorch is that it doesn’t construct a model graph internally like other frameworks such
as TensorFlow. This means that determining the model structure requires a forward pass through the model with
some dummy data and parsing the subsequent graph built by autograd. Thankfully, TensorboardX can do this for us.
The TensorBoard callback makes things a little easier by creating the dummy data for us and handling the
interaction with TensorboardX. The size of the dummy data is chosen to match the size of the data in the dataset / data
loader, this means that we need at least one batch of training data for the graph to be written. Let’s train for one epoch
just to see a model graph:

from torchbearer import Trial
from torchbearer.callbacks import TensorBoard

(continues on next page)
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torchbearer_trial = Trial (model, optimizer, loss, metrics=['acc', 'loss'],
—callbacks=[TensorBoard (write_graph=True, write_batch_metrics=False, write_epoch_
—metrics=False)]) .to('cuda'’

torchbearer_trial.with_generators(train_generator=traingen, val_generator=valgen)
torchbearer_trial.run (epochs=1)

To see the result, navigate to the project directory and execute the command tensorboard --logdir logs,
then open a web browser and navigate to localhost:6006. After a bit of clicking around you should be able to see and
download something like the following:

unused input SimpleModel

SimpleModel
Linearclassifier]

%
Réshape...

Constant_33

2

Sequential[convs]

3
o

%

ReLU[8]

BatchNorm2...

Conv2d[6]
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BatchNorm?2...

Conv2d[3]

1ox15x I..n.y. I..z;“ I..z;“ I.Am.;‘ I..i.w I

ReL[Z]

1ox15x l

BatchNorm2...

l i |

input Conv2d[0]

The dynamic graph construction does introduce some weirdness, however, this is about as good as model graphs
typically get.

3.2. Logging the Model Graph 9
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3.3 Logging Batch Metrics

If we have some metrics that output every batch, we might want to log them to tensorboard. This is useful particularly
if epochs are long and we want to watch them progress. For this we can set write_batch_metrics=True in
the TensorBoard callback constructor. Setting this flag will cause the batch metrics to be written as graphs to
tensorboard. We are also able to change the frequency of updates by choosing the batch_step_size. This is the
number of batches to wait between updates and can help with reducing the size of the logs, 10 seems reasonable. We
run this for 10 epochs with the following:

torchbearer trial Trial (model, optimizer,
—callbacks=[TensorBoard(write_graph=False,
—size=10,

loss, metrics=['acc', 'loss']
write_batch_metrics=True,
write_epoch_metrics=False)]) .to('cuda')
torchbearer_trial.with_generators(train_generator=traingen,
torchbearer_trial.run (epochs=10)

ro

batch_step_

val_generator=valgen)

Runnng tensorboard again with tensorboard --logdir logs, navigating to localhost:6006 and selecting
‘WALL’ for the horizontal axis we can see the following:

TensorBoard SCALARS INACTIVE M * O]

batch/running_acc
[ show data download links
Ignore outliers in chart scaling
0.800
Tooltip sorting method: default — ~
0750 s

Smoothing 0.700

/\/\#

—e 06
0650
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osto ~
/"\u

Horizontal Axis

STEP RELATIVE WALL 0550

0500
Runs

Write a regex to filter runs

O simpleModel_torchbearer

@ SimpleModel_torchbearer/epoch-0
O simpleModel_torchbearer/epoch-1

0450

o754 Al
DED@D

batch/running_loss

07:3350 AM 07:3355 AM 07:34:00 AM

August 10, 2018

07:34:05 AM 07:34:10 AM

O simpleModel_torchbearer/epoch-2

O SimpleModel_torchbearer/epoch-3

O simpleModel_torchbearer/epoch-4 e
SimpleModel_torchbearer/epoch-5 140

O simpleModel_torchbearer/epoch6

O simpleModel_torchbearer/epoch-7
O simpleModel_torchbearer/epoch-8
(O SimpleModel_torchbearer/epoch-9 0.800

07:33:45 AM

DED

07:33:50 AM 07:3355 AM 07:34:00 AM

August 10, 2018

07:34:05 AM 07:34:10 AM

TOGGLE ALL RUNS

logs

3.4 Logging Epoch Metrics

Logging epoch metrics is perhaps the most typical use case of TensorBoard and the TensorBoard callback.

Using the same model as before, but setting write_ epoch_metrics=True we can log epoch metrics with the
following:

torchbearer_trial = Trial (model, optimizer, loss, metrics=['acc', 'loss'],
—callbacks=[TensorBoard (write_graph=False, write_batch_metrics=False, write_epoch_
—metrics=True)]) .to('cuda')

torchbearer_trial.with_generators (train_generator=traingen,
torchbearer_trial.run (epochs=10)

val_generator=valgen)

10 Chapter 3. Using the Tensorboard Callback
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Again, runnng tensorboard with tensorboard —-logdir logs and navigating to localhost:6006 we see the
following:

TensorBoard SCALARS INACTIVE ~c & 0B
[ Show data download links Q_ Filter tags (regular expressions supported)
Ignore outliers in chart scaling
epoch 10
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logs

Note that we also get the batch metrics here. In fact this is the terminal value of the batch metric, which means that
by default it is an average over the last 50 batches. This can be useful when looking at over-fitting as it gives a more
accurate depiction of the model performance on the training data (the other training metrics are an average over the
whole epoch despite model performance changing throughout).

3.5 Source Code

The source code for these examples is given below:

Download Python source code: tensorboard.py

3.5. Source Code 11
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CHAPTER 4

Logging to Visdom

In this note we will cover the use of the TensorBoard callback tologto visdom. See the tensorboard note for
more on the callback in general.

4.1 Model Setup

We’ll use the same setup as the tensorboard note.

BATCH_SIZE = 128

normalize = transforms.Normalize (mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])

dataset = torchvision.datasets.CIFAR1O (root="'./data/cifar', train=True, download=True,
transform=transforms.Compose ([transforms.

—ToTensor (), normalizel]))

splitter = DatasetValidationSplitter (len(dataset), 0.1)

trainset = splitter.get_train_dataset (dataset)

valset = splitter.get_val_dataset (dataset)

traingen = torch.utils.data.Dataloader (trainset, pin_memory=True, batch_size=BATCH_
—SIZE, shuffle=True, num_workers=10)

valgen = torch.utils.data.DatalLoader (valset, pin_memory=True, batch_size=BATCH_SIZE,
—shuffle=True, num_workers=10)

testset = torchvision.datasets.CIFAR1O (root="'./data/cifar', train=False,
—download=True,

transform=transforms.Compose ([transforms.
—ToTensor (), normalizel]))
testgen = torch.utils.data.Dataloader (testset, pin_memory=True, batch_size=BATCH_SIZE,
— shuffle=False, num_workers=10)

13
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class SimpleModel (nn.Module) :
def _ init_ (self):

super (SimpleModel, self)._ _init__ ()

self.convs = nn.Sequential (
nn.Conv2d (3, 16, stride=2, kernel_size=3),
nn.BatchNorm2d (16),
nn.RelLU(),
nn.Conv2d (16, 32, stride=2, kernel_size=3),
nn.BatchNorm2d (32),
nn.RelLU(),
nn.Conv2d (32, 64, stride=2, kernel_size=3),
nn.BatchNorm2d (64),
nn.ReLU ()

self.classifier = nn.Linear (576, 10)
def forward(self, x):
x = self.convs (x)

x = x.view(-1, 576)
return self.classifier (x)

model = SimpleModel ()

optimizer = optim.Adam(filter (lambda p: p.requires_grad, model.parameters()), lr=0.
—001)
loss = nn.CrossEntropyLoss ()

4.2 Logging Epoch and Batch Metrics

Visdom does not support logging model graphs so we shall start with logging epoch and batch metrics. The only
change we need to make to the tensorboard example is setting visdom=True in the TensorBoard callback
constructor.

torchbearer_trial = Trial (model, optimizer, loss, metrics=['acc', 'loss'],_
—callbacks=[TensorBoard (visdom=True, write_graph=True, write_batch_metrics=True,
—batch_step_size=10, write_epoch_metrics=True)]).to('cuda')
torchbearer_trial.with_generators (train_generator=traingen, val_generator=valgen)
torchbearer_trial.run (epochs=5)

If your visdom server is running then you should see something similar to the figure below:

4.3 Visdom Client Parameters

The visdom client defaults to logging to localhost:8097 in the main environment however this is rather restrictive.
We would like to be able to log to any server on any port and in any environment. To do this we need to edit the
VisdomParams class.

class VisdomParams:

mmn mmwn

SERVER = 'http://localhost'

(continues on next page)
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(continued from previous page)

ENDPOINT = 'events'

PORT = 8097

IPV6 = True
HTTP_PROXY_HOST = None
HTTP_PROXY_PORT None
ENV = "main'

SEND = True
RAISE_EXCEPTIONS = None
USE_INCOMING_SOCKET = True
LOG_TO_FILENAME = None

We first import the tensorboard file.

import torchbearer.callbacks.tensor_board as tensorboard

We can then edit the visdom client parameters, for example, changing the environment to “Test”.

tensorboard.VisdomParams.ENV = 'Test'

Running another fit call, we can see we are now logging to the “Test” environment.

The only paramenter that the TensorBoard callback sets explicity (and cannot be overrided) is the
LOG_TO_FILENAME parameter. This is set to the log_dir given on the callback init.

4.4 Source Code

The source code for this example is given below:

Download Python source code: visdom.py

4.4. Source Code 15
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CHAPTER B

Notebooks List

Here we have a list of example notebooks using Torchbearer with a brief description of the contents and broken down
by broad subject.

5.1 General

¢ Quickstart Guide:

This guide will give a quick intro to training PyTorch models with Torchbearer.

PreviewDownload Notebook Run on Colab

Callbacks Guide:

This guide will give an introduction to using callbacks with Torchbearer.

PreviewDownload Notebook Run on Colab
* Imaging Guide:

This guide will give an introduction to using the imaging sub-package with Torchbearer.

PreviewDownload Notebook Run on Colab
¢ Serialization:

This guide gives an introduction to serializing and restarting training in Torchbearer.

PreviewDownload Notebook Run on Colab
* History and Replay:

This guide gives an introduction to the history returned by a trial and the ability to replay training.
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torchbearer Documentation, Release 0.5.0.dev

PreviewDownload Notebook Run on Colab
¢ Custom Data Loaders:

This guide gives an introduction on how to run custom data loaders in Torchbearer.

PreviewDownload Notebook Run on Colab

Data Parallel with Torchbearer:

This guide gives a brief introduction on how to use PyTorch DataParallel with Torchbearer models.

PreviewDownload Notebook Run on Colab
¢ LiveLossPlot with Torchbearer:

This guide shows how we can get live loss visualisations in notebooks with LiveLossPlot.

PreviewDownload Notebook Run on Colab

PyCM with Torchbearer:

This guide shows how we can generate confusion matrices with PyCM in torchbearer.

PreviewDownload Notebook Run on Colab
¢ Nvidia Apex with Torchbearer:

This guide shows how we can do half and mixed precision training in torchbearer.

PreviewDownload Notebook Run on Colab

5.2 Deep Learning

* Training a VAE:

This guide covers training a variational auto-encoder (VAE) in Torchbearer, taking advantage of the
persistent state.

PreviewDownload Notebook Run on Colab
e Training a GAN:

This guide will cover how to train a Generative Adversarial Network (GAN) in Torchbearer using
custom closures to allow for the more complicated training loop.

PreviewDownload Notebook Run on Colab
¢ Class Appearance Model:

In this example we will demonstrate the ClassAppearanceModel callback included in torchbearer.
This implements one of the most simple (and therefore not always the most successful) deep visual-
isation techniques, discussed in the paper Deep Inside Convolutional Networks: Visualising Image
Classification Models and Saliency Maps

PreviewDownload Notebook Run on Colab
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https://nbviewer.jupyter.org/github/pytorchbearer/torchbearer/blob/master/docs/_static/notebooks/custom_loaders.ipynb
https://colab.research.google.com/github/pytorchbearer/torchbearer/blob/master/docs/_static/notebooks/custom_loaders.ipynb
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https://nbviewer.jupyter.org/github/pytorchbearer/torchbearer/blob/master/docs/_static/notebooks/livelossplot.ipynb
https://colab.research.google.com/github/pytorchbearer/torchbearer/blob/master/docs/_static/notebooks/livelossplot.ipynb
https://nbviewer.jupyter.org/github/pytorchbearer/torchbearer/blob/master/docs/_static/notebooks/pycm.ipynb
https://colab.research.google.com/github/pytorchbearer/torchbearer/blob/master/docs/_static/notebooks/pycm.ipynb
https://nbviewer.jupyter.org/github/pytorchbearer/torchbearer/blob/master/docs/_static/notebooks/apex_torchbearer.ipynb
https://colab.research.google.com/github/pytorchbearer/torchbearer/blob/master/docs/_static/notebooks/apex_torchbearer.ipynb
https://nbviewer.jupyter.org/github/pytorchbearer/torchbearer/blob/master/docs/_static/notebooks/vae.ipynb
https://colab.research.google.com/github/pytorchbearer/torchbearer/blob/master/docs/_static/notebooks/vae.ipynb
https://nbviewer.jupyter.org/github/pytorchbearer/torchbearer/blob/master/docs/_static/notebooks/gan.ipynb
https://colab.research.google.com/github/pytorchbearer/torchbearer/blob/master/docs/_static/notebooks/gan.ipynb
https://torchbearer.readthedocs.io/en/latest/code/callbacks.html#torchbearer.callbacks.imaging.inside_cnns.ClassAppearanceModel
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1312.6034
https://nbviewer.jupyter.org/github/pytorchbearer/torchbearer/blob/master/docs/_static/notebooks/cam.ipynb
https://colab.research.google.com/github/pytorchbearer/torchbearer/blob/master/docs/_static/notebooks/cam.ipynb
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* Adversarial Example Generation:

This guide will cover how to perform a simple adversarial attack in Torchbearer.

PreviewDownload Notebook Run on Colab
¢ Transfer Learning:

This guide will cover how to perform transfer learning of a model with Torchbearer.

PreviewDownload Notebook Run on Colab
¢ Regularising Models:

This guide will cover how to use Torchbearers built-in regularisers.

PreviewDownload Notebook Run on Colab

5.3 Differentiable Programming

* Optimising Functions:

This guide will briefly show how we can do function optimisation using Torchbearer.

PreviewDownload Notebook Run on Colab
e Linear SVM:

This guide will train a linear support vector machine (SVM) using Torchbearer.

PreviewDownload Notebook Run on Colab
* Breaking ADAM:

This guide uses Torchbearer to implement On the Convergence of Adam and Beyond, one of the top
papers at ICLR 2018, which demonstrated a case where ADAM does not converge.

PreviewDownload Notebook Run on Colab
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https://colab.research.google.com/github/pytorchbearer/torchbearer/blob/master/docs/_static/notebooks/adversarial.ipynb
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https://nbviewer.jupyter.org/github/pytorchbearer/torchbearer/blob/master/docs/_static/notebooks/svm_linear.ipynb
https://colab.research.google.com/github/pytorchbearer/torchbearer/blob/master/docs/_static/notebooks/svm_linear.ipynb
https://openreview.net/forum?id=ryQu7f-RZ
https://nbviewer.jupyter.org/github/pytorchbearer/torchbearer/blob/master/docs/_static/notebooks/amsgrad.ipynb
https://colab.research.google.com/github/pytorchbearer/torchbearer/blob/master/docs/_static/notebooks/amsgrad.ipynb
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CHAPTER O

torchbearer

6.1 Trial

class torchbearer.Trial (model, optimizer=None, criterion=None, metrics=[], callbacks=[], ver-

bose=2)
The trial class contains all of the required hyper-parameters for model running in torchbearer and presents an
API for model fitting, evaluating and predicting.

Example:

>>> import torch
>>> from torchbearer import Trial

# Example trial that attempts to aims the output of a linear layer.

# Makes use of a callback to input the random data at each batch and a loss that,_
—~1s the absolute value of the

# linear layer output. Runs for 10 iterations and a single epoch.

>>> model = torch.nn.Linear(2,1)

>>> optimiser = torch.optim.Adam(model.parameters (), lr=3e-4)

>>> @torchbearer.callbacks.on_sample
def initial_data(state):
. state[torchbearer.X] = torch.rand(1l, 2)=10
>>> def minimise_output_loss(y_pred, y_true):
return torch.abs (y_pred)
>>> trial = Trial (model, optimiser, minimise_output_loss, ['loss'], [initial__
—datal]) .for_steps (10) .run (1)

@article{2018torchbearer,
title={Torchbearer: A Model Fitting Library for PyTorch},
author={Harris, Ethan and Painter, Matthew and Hare, Jonathon},
journal={arXiv preprint arXiv:1809.03363},
year={2018}
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Parameters
* model (torch.nn.Module)— The base pytorch model

* optimizer (torch.optim.Optimizer) — The optimizer used for pytorch model
weight updates

* criterion (func / None)— The final loss criterion that provides a loss value to the
optimizer

* metrics (1ist)— Thelist of torchbearer.Metric instances to process during fit-
ting

* callbacks (1ist) — The list of torchbearer.Callback instances to call during
fitting

* verbose (int)— Global verbosity .If 2: use tqdm on batch, If 1: use tqdm on epoch, If 0:
display no training progress

for_ train_steps (steps)

Run this trial for the given number of training steps. Note that the generator will output (None, None) if it
has not been set. Useful for differentiable programming. Returns self so that methods can be chained for
convenience. If steps is larger than dataset size then loader will be refreshed like if it was a new epoch. If
steps is -1 then loader will be refreshed until stopped by STOP_TRAINING flag or similar.

Example:

# Simple trial that runs for 100 training iterations, in this case optimising
—nothing

>>> from torchbearer import Trial

>>> trial = Trial (None) .for_train_steps(100)

[

Parameters steps (int)— The number of training steps per epoch to run.
Returns self

Return type Trial

with_train_generator (generator, steps=None)

Use this trial with the given train generator. Returns self so that methods can be chained for convenience.

Example:

# Simple trial that runs for 100 training iterations on the MNIST dataset

>>> from torchbearer import Trial

>>> from torchvision.datasets import MNIST

>>> from torch.utils.data import Dataloader

>>> dataloader = DatalLoader (MNIST('./data/', train=True))

>>> trial = Trial (None) .with_train_generator (dataloader) .for_steps (100) .run(l)

Parameters

* generator — The train data generator to use during calls to run ()

* steps (int)— The number of steps per epoch to take when using this generator.
Returns self

Return type Trial

22
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with_train_data (x, y, batch_size=1, shuffle=True, num_workers=1, steps=None)
Use this trial with the given train data. Returns self so that methods can be chained for convenience.

Example:

# Simple trial that runs for 10 training iterations on some random data
>>> from torchbearer import Trial
>>> data = torch.rand (10, 1)

>>> targets = torch.rand (10, 1)
>>> trial = Trial (None) .with_val_data(data, targets).for_steps(10).run(l)
Parameters

* x (torch. Tensor)— The train x data to use during calls to run ()
e y(torch. Tensor)— The train labels to use during calls to run ()
* batch_size (int) — The size of each batch to sample from the data
* shuffle (bool) - If True, then data will be shuffled each epoch
e num workers (int)— Number of worker threads to use in the data loader
* steps (int)— The number of steps per epoch to take when using this data
Returns self
Return type Trial
for_val_steps (steps)
Run this trial for the given number of validation steps. Note that the generator will output (None, None)
if it has not been set. Useful for differentiable programming. Returns self so that methods can be chained

for convenience. If steps larger than dataset size then loader will be refreshed like if it was a new epoch. If
steps -1 then loader will be refreshed until stopped by STOP_TRAINING flag or similar.

Example:

# Simple trial that runs for 10 validation iterations on no data
>>> from torchbearer import Trial

>>> data = torch.rand (10, 1)

>>> trial = Trial (None) .for_val_steps(10).run(1l)

Parameters steps (int)— The number of validation steps per epoch to run
Returns self
Return type Trial

with_val_generator (generator, steps=None)

Use this trial with the given validation generator. Returns self so that methods can be chained for conve-
nience.

Example:

# Simple trial that runs for 100 validation iterations on the MNIST dataset
>>> from torchbearer import Trial

>>> from torchvision.datasets import MNIST

>>> from torch.utils.data import Dataloader

>>> dataloader = DatalLoader (MNIST('./data/', train=False))

>>> trial = Trial (None) .with_val_generator (dataloader) .for_steps (100).run(l)

6.1. Trial 23
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Parameters

* generator — The validation data generator to use during calls to run () and
evaluate ()

* steps (int)— The number of steps per epoch to take when using this generator
Returns self
Return type Trial
with_val_data (x, y, batch_size=1, shuffle=True, num_workers=1, steps=None)
Use this trial with the given validation data. Returns self so that methods can be chained for convenience.

Example:

# Simple trial that runs for 10 validation iterations on some random data
>>> from torchbearer import Trial
>>> data = torch.rand (10, 1)

>>> targets = torch.rand (10, 1)
>>> trial = Trial (None) .with_val_data(data, targets) .for_steps(10).run(l)
Parameters

* x (torch.Tensor) — The validation x data to use during calls to run () and
evaluate ()

ey (torch.Tensor) — The validation labels to use during calls to run () and
evaluate ()

* batch_size (int) — The size of each batch to sample from the data
e shuffle (bool) - If True, then data will be shuffled each epoch
* num workers (int)— Number of worker threads to use in the data loader
* steps (int)— The number of steps per epoch to take when using this data
Returns self
Return type Trial
for_ test_steps (steps)
Run this trial for the given number of test steps. Note that the generator will output (None, None) if it
has not been set. Useful for differentiable programming. Returns self so that methods can be chained for

convenience. If steps larger than dataset size then loader will be refreshed like if it was a new epoch. If
steps -1 then loader will be refreshed until stopped by STOP_TRAINING flag or similar.

Example:

# Simple trial that runs for 10 test iterations on some random data
>>> from torchbearer import Trial

>>> data = torch.rand (10, 1)

>>> trial = Trial (None) .with_test_data(data) .for_test_steps(10).run(l)

Parameters steps (int) — The number of test steps per epoch to run (when using
predict())

Returns self

Return type Trial
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with_test_generator (generator, steps=None)
Use this trial with the given test generator. Returns self so that methods can be chained for convenience.

Example:

# Simple trial that runs for 10 test iterations on no data

>>> from torchbearer import Trial

>>> data = torch.rand (10, 1)

>>> trial = Trial (None) .with_test_data(data) .for_test_steps(10).run(l)

Parameters
* generator — The test data generator to use during calls to predict ()
* steps (int)— The number of steps per epoch to take when using this generator
Returns self
Return type Trial
with_test_data (x, batch_size=1, num_workers=1, steps=None)
Use this trial with the given test data. Returns self so that methods can be chained for convenience.

Example:

# Simple trial that runs for 10 test iterations on some random data
>>> from torchbearer import Trial

>>> data = torch.rand (10, 1)

>>> trial = Trial (None) .with_test_data(data) .for_test_steps(10).run(1l)

Parameters
* x (torch. Tensor) — The test x data to use during calls to predict ()
* batch_size (int) — The size of each batch to sample from the data
* num workers (int)— Number of worker threads to use in the data loader
* steps (int)— The number of steps per epoch to take when using this data

Returns self

Return type Trial

for_steps (train_steps=None, val_steps=None, test_steps=None)
Use this trial for the given number of train, val and test steps. Returns self so that methods can be chained

for convenience. If steps larger than dataset size then loader will be refreshed like if it was a new epoch. If
steps -1 then loader will be refreshed until stopped by STOP_TRAINING flag or similar.

Example:

# Simple trial that runs for 10 training, validation and test iterations on,
—some random data

>>> from torchbearer import Trial

>>> train_data = torch.rand (10, 1)

>>> val_data = torch.rand (10, 1)

>>> test_data = torch.rand (10, 1)

>>> trial = Trial (None) .with_train_data(train_data) .with_val_data(val_data) .
—with_test_data(test_data)

>>> trial.for_steps (10, 10, 10).run(l)
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Parameters
* train_steps (int)— The number of training steps per epoch to run
* val_steps (int)— The number of validation steps per epoch to run

* test_steps (int) — The number of test steps per epoch to run (when using
predict ())

Returns self
Return type Trial

with_generators (train_generator=None, val_generator=None, test_generator=None,

train_steps=None, val_steps=None, test_steps=None)
Use this trial with the given generators. Returns self so that methods can be chained for convenience.

Example:

# Simple trial that runs for 100 steps from a training and validation data,,
—generator

>>> from torchbearer import Trial

>>> from torchvision.datasets import MNIST

>>> from torch.utils.data import DatalLoader

>>> trainloader = Dataloader (MNIST('./data/', train=True))

>>> valloader = DataLoader (MNIST('./data/', train=False))

>>> trial = Trial (None) .with_generators(trainloader, valloader, train_
—steps=100, val_steps=100).run(1l)

Parameters
* train_generator — The training data generator to use during calls to run ()

* val_generator — The validation data generator to use during calls to run () and
evaluate ()

* test_generator - The testing data generator to use during calls to predict ()

* train_steps (int) — The number of steps per epoch to take when using the training
generator

* val_steps (int) — The number of steps per epoch to take when using the validation
generator

* test_steps (int) — The number of steps per epoch to take when using the testing
generator

Returns self
Return type Trial

with_data (x_train=None, y_train=None, x_val=None, y_val=None, x_test=None, batch_size=1,

num_workers=1, train_steps=None, val_steps=None, test_steps=None, shuffle=True)
Use this trial with the given data. Returns self so that methods can be chained for convenience.

Example:

# Simple trial that runs for 10 test iterations on some random data
>>> from torchbearer import Trial

>>> data = torch.rand (10, 1)

>>> targets = torch.rand (10, 1)

>>> test_data = torch.rand (10, 1)

(continues on next page)
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(continued from previous page)

—data)

>>> trial = Trial (None) .with_data(x_train=data, y_train=targets, x_test=test_

>>> trial.for_test_steps(10).run(l)

Parameters

x_train (torch. Tensor) — The training data to use

y_train (torch. Tensor) — The training targets to use

x_val (torch. Tensor)— The validation data to use

y_val (torch. Tensor) — The validation targets to use

x_test (torch. Tensor)— The test data to use

batch_size (int)— Batch size to use in mini-batching

num_workers (int)— Number of workers to use for data loading and batching
train_steps (int)— Number of steps for each training pass

val_steps (int)— Number of steps for each validation pass

test_steps (int)— Number of steps for each test pass

shuffle (bool) - If True, shuffle training and validation data.

Returns self

Return type Trial

for_inf train_steps()
Use this trial with an infinite number of training steps (until stopped via STOP_TRAINING flag or similar).
Returns self so that methods can be chained for convenience.

Example:

# Simple trial that runs training data until stopped
>>> from torchbearer import Trial

>>> from torchvision.datasets import MNIST

>>> from torch.utils.data import Dataloader

>>> trainloader = DatalLoader (MNIST('./data/', train=True))
>>> trial = Trial (None) .with_train_generator (trainloader) .for_inf_ train_
—steps ()

>>> trial.run (1)

Returns self

Return type Trial

for_inf val_steps()
Use this trial with an infinite number of validation steps (until stopped via STOP_TRAINING flag or
similar). Returns self so that methods can be chained for convenience.

Example:

# Simple trial that runs validation data until stopped
>>> from torchbearer import Trial
>>> from torchvision.datasets import MNIST

(continues on next page)
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(continued from previous page)

>>> from torch.utils.data import Dataloader

>>> valloader = DatalLoader (MNIST('./data/', train=False))

>>> trial = Trial (None) .with_val_generator (valloader) .for_inf_wval_steps|()
>>> trial.run (1)

Returns self
Return type Trial
for_inf test_steps()

Use this trial with an infinite number of test steps (until stopped via STOP_TRAINING flag or similar).
Returns self so that methods can be chained for convenience.

Example:

# Simple trial that runs test data until stopped

>>> from torchbearer import Trial

>>> test_data = torch.rand (1000, 10)

>>> trial = Trial (None) .with_test_data(test_data) .for_inf_test_steps|()
>>> trial.run(l)

Returns self
Return type Trial
for_inf steps (train=True, val=True, test=True)
Use this trail with infinite steps. Returns self so that methods can be chained for convenience.

Example:

# Simple trial that runs training and test data until stopped

>>> from torchbearer import Trial

>>> from torchvision.datasets import MNIST

>>> from torch.utils.data import Dataloader

>>> trainloader = DataLoader (MNIST('./data/', train=True))

>>> valloader = DatalLoader (MNIST('./data/', train=False))

>>> trial = Trial (None) .with_train_generator (trainloader) .for_inf_
—steps(valloader)

>>> trial.with_inf_test_loader (True, False, True) .run (1)

Parameters
* train (boo1l) - Use an infinite number of training steps
* val (bool) - Use an infinite number of validation steps
* test (bool) - Use an infinite number of test steps

Returns self

Return type Trial

with_inf train_loader ()
Use this trial with a training iterator that refreshes when it finishes instead of each epoch. This allows

for setting training steps less than the size of the generator and model will still be trained on all training
samples if enough “epochs” are run.

Example:
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# Simple trial that runs 10 epochs of 100 iterations of a training generator,_
—without reshuffling until all data has been seen

>>> from torchbearer import Trial

>>> from torchvision.datasets import MNIST

>>> from torch.utils.data import Dataloader

>>> trainloader = DataLoader (MNIST('./data/', train=True))

>>> trial = Trial (None) .with_train_generator (trainloader) .with_inf_ train_
—loader ()

>>> trial.run(10)

Returns self:
Return type Trial
with_loader (batch_loader)

Use this trial with custom batch loader. Usually calls next on state[torchbearer ITERATOR] and populates
state[torchbearer.X] and state[torchbearer.Y_TRUE]

Example:

# Simple trial that runs with a custom loader function that populates X and Y_
—TRUE in state with random data

>>> from torchbearer import Trial

>>> def custom_loader (state) :

. state[X], state[Y_TRUE] = torch.rand(5, 5), torch.rand(5, 5)

>>> trial = Trial (None) .with_loader (custom_loader)

>>> trial.run(10)

Parameters batch_loader (function) — Function of state that extracts data from data
loader (stored under torchbearerITERATOR), stores it in state and sends it to the correct
device

Returns self:
Return type Trial
with_closure (closure)
Use this trial with custom closure

Example:

# Simple trial that runs with a custom closure
>>> from torchbearer import Trial
>>> def custom_closure (state):

print (state[torchbearer.BATCH])

>>> trial = Trial (None) .with_closure(custom_closure) .for_steps(3)
>>> _ = trial.run(l)

0

1

2

Parameters closure (function)— Function of state that defines the custom closure
Returns self:

Return type Trial
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run (epochs=1, verbose=-1)
Run this trial for the given number of epochs, starting from the last trained epoch.

Example:

# Simple trial that runs with a custom closure
>>> from torchbearer import Trial

>>> trial = Trial (None) .for_steps (100)

>>> _ = trial.run (1)

Parameters
* epochs (int, optional)-The number of epochs to run for

* verbose (int, optional) - If2: use tqdm on batch, If 1: use tgdm on epoch, If O:
display no training progress, If -1: Automatic

State Requirements:

e torchbearer.state.MODEL: Model should be callable and not none, set on Trial init

Returns The model history (list of tuple of steps summary and epoch metric dicts)
Return type list
evaluate (verbose=-1, data_key=None)
Evaluate this trial on the validation data.

Example:

# Simple trial to evaluate on both validation and test data

>>> from torchbearer import Trial

>>> test_data = torch.rand (5, 5)

>>> val_data = torch.rand (5, 5)

>>> t = Trial (None) .with_val_data(val_data) .with_test_data (test_data)
>>> t.evaluate (data_key=torchbearer.VALIDATION_DATA) .evaluate (data_
—key=torchbearer.TEST_DATA)

Parameters

* verbose (int) — If 2: use tqdm on batch, If 1: use tqdm on epoch, If 0: display no
training progress, If -1: Automatic

* data_key (StateKey) — Optional StateKey for the data to evaluate on. Default:
torchbearer. VALIDATION_DATA

Returns The final metric values
Return type dict
predict (verbose=-1, data_key=None)
Determine predictions for this trial on the test data.

Example:

# Simple trial to predict on some validation and test data
>>> from torchbearer import Trial

>>> val_data = torch.rand(5, 5)

>>> test_data = torch.rand (5, 5)

(continues on next page)
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(continued from previous page)

>>> t = Trial (None) .with_ test_data (test_data)
>>> test_predictions = t.predict (data_key=torchbearer.TEST_DATA)

Parameters

* verbose (int) — If 2: use tqdm on batch, If 1: use tqdm on epoch, If 0: display no
training progress, If -1: Automatic

* data_key (StateKey) — Optional StateKey for the data to predict on. Default:
torchbearer. TEST DATA

Returns Model outputs as a list
Return type list
replay (callbacks=None, verbose=2, one_batch=False)

Replay the fit passes stored in history with given callbacks, useful when reloading a saved Trial. Note that
only progress and metric information is populated in state during a replay.

Example:

>>> from torchbearer import Trial

>>> state = torch.load('some_state.pt')
>>> t = Trial (None) .load_state_dict (state)
>>> t.replay ()

Parameters
* callbacks (1ist) — List of callbacks to be run during the replay

* verbose (int) — If 2: use tqdm on batch, If 1: use tqdm on epoch, If 0: display no
training progress

* one_batch (boo1l)-If True, only one batch per epoch is replayed. If False, all batches
are replayed

Returns self
Return type Trial
train ()
Set model and metrics to training mode.

Example: ::

>>> from torchbearer import Trial
>>> t = Trial (None) .train ()

Returns self
Return type Trial
eval ()
Set model and metrics to evaluation mode

Example: ::

>>> from torchbearer import Trial
>>> t = Trial (None) .eval ()
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Returns self
Return type Trial
to (*args, **kwargs)
Moves and/or casts the parameters and buffers.

Example: ::

>>> from torchbearer import Trial
>>> t = Trial (None) .to('cuda:1")

Parameters
* args — See: torch.nn.Module.to
* kwargs — See: torch.nn.Module.to
Returns self
Return type Trial
cuda (device=None)
Moves all model parameters and buffers to the GPU.

Example: ::

>>> from torchbearer import Trial
>>> t = Trial (None) .cuda ()

Parameters device (int) — if specified, all parameters will be copied to that device
Returns self
Return type Trial
cpu ()
Moves all model parameters and buffers to the CPU.

Example: ::

>>> from torchbearer import Trial
>>> t = Trial (None) .cpu()

Returns self
Return type Trial
state_dict (**kwargs)
Get a dict containing the model and optimizer states, as well as the model history.

Example: ::

>>> from torchbearer import Trial

>>> t = Trial (None)
>>> state = t.state_dict () # State dict that can now be saved with torch.
—save

Parameters kwargs — See: torch.nn.Module.state_dict
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Returns A dict containing parameters and persistent buffers.

Return type dict

load_state_dict (state_dict, resume=True, **kwargs)
Resume this trial from the given state. Expects that this trial was constructed in the same way. Optionally,
just load the model state when resume=False.

Example: ::

>>> from torchbearer import Trial

>>> t = Trial (None)

>>> state = torch.load('some_state.pt')
>>> t.load_state_dict (state)

Parameters
e state_dict (dict) - The state dict to reload

* resume (bool) — If True, resume from the given state. Else, just load in the model
weights.

* kwargs — See: torch.nn.Module.load_state_dict
Returns self

Return type Trial

6.1.1 Batch Loaders

torchbearer.trial.load batch_infinite (loader)
Wraps a batch loader and refreshes the iterator once it has been completed.

Parameters loader — batch loader to wrap

torchbearer.trial.load_batch_none (state)
Load a none (none, none) tuple mini-batch into state

Parameters state (dict)— The current state dict of the Trial.

torchbearer.trial.load_batch_predict (state)
Load a prediction (input data, target) or (input data) mini-batch from iterator into state

Parameters state (dict) - The current state dict of the Trial.

torchbearer.trial.load_batch_ standard (state)
Load a standard (input data, target) tuple mini-batch from iterator into state

Parameters state (dict)— The current state dict of the Trial.

6.1.2 Misc

torchbearer.trial.deep_to (batch, device, dtype)
Static method to call to () on tensors, tuples or dicts. All items will have deep_to () called

Example:

6.1. Trial

33



https://pytorch.org/docs/stable/nn.html?highlight=#torch.nn.Module.load_state_dict

torchbearer Documentation, Release 0.5.0.dev

>>> import torch
>>> from torchbearer import deep_to
>>> example_dict = {'a': torch.ones(5)x2.1, 'b': torch.ones(l)*5.9}
>>> deep_to(example_dict, device='cpu', dtype=torch.int)
{'a': tensor([2, 2, 2, 2, 2], dtype=torch.int32), 'b': tensor([5], dtype=torch.
—~int32) }
Parameters

e batch (tuple / list / torch.Tensor / dict) — The mini-batch which re-
quires a to () call

e device (torch.device)— The desired device of the batch

* dtype (torch. dtype)— The desired datatype of the batch
Returns The moved or casted batch
Return type tuple / list / torch.Tensor

torchbearer.trial .update_device_and_dtype (state, *args, **kwargs)
Function gets data type and device values from the args / kwargs and updates state.

Parameters

* state (State)—The State to update

* args — Arguments to the Trial.to () function

* kwargs — Keyword arguments to the Trial.to () function

Returns state

6.2 State

The state is central in torchbearer, storing all of the relevant intermediate values that may be changed or replaced during
model fitting. This module defines classes for interacting with state and all of the built in state keys used throughout
torchbearer. The state_key () function can be used to create custom state keys for use in callbacks or metrics.

Example:

>>> from torchbearer import state_key
>>> MY_KEY = state_key('my_test_key')

6.2.1 State

class torchbearer.state.State
State dictionary that behaves like a python dict but accepts StateKeys

data
get_key (statekey)

update ( [E ], **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
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class torchbearer.state.StateKey (key)
StateKey class that is a unique state key based on the input string key. State keys are also metrics which retrieve
themselves from state.

Parameters key (str)— Base key

process (state)
Process the state and update the metric for one iteration.

Parameters args — Arguments given to the metric. If this is a root level metric, will be given
state

Returns None, or the value of the metric for this batch

process_final (state)
Process the terminal state and output the final value of the metric.

Parameters args — Arguments given to the metric. If this is a root level metric, will be given
state

Returns None or the value of the metric for this epoch

torchbearer.state.state_key (key)
Computes and returns a non-conflicting key for the state dictionary when given a seed key

Parameters key (str)— The seed key - basis for new state key
Returns New state key

Return type SrateKey

6.2.2 Key List

torchbearer.state.BACKWARD_ARGS = backward_args
The optional arguments which should be passed to the backward call

torchbearer.state.BATCH = t
The current batch number

torchbearer.state.CALLBACK_LIST = callback_list
The CallbackList object which is called by the Trial

torchbearer.state.CRITERION = criterion
The criterion to use when model fitting

torchbearer.state.DATA = data
The string name of the current data

torchbearer.state.DATA_TYPE = dtype
The data type of tensors in use by the model, match this to avoid type issues

torchbearer.state.DEVICE = device
The device currently in use by the Trial and PyTorch model

torchbearer.state.EPOCH = epoch
The current epoch number

torchbearer.state.FINAL PREDICTIONS = final predictions
The key which maps to the predictions over the dataset when calling predict

torchbearer.state.GENERATOR = generator
The current data generator (Datal.oader)
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torchbearer.state.HISTORY = history
The history list of the Trial instance

torchbearer.state.INF_TRAIN_LOADING = inf_ train loading
Flag for refreshing of training iterator when finished instead of each epoch

torchbearer.state.INPUT = x
The current batch of inputs

torchbearer.state.ITERATOR = iterator
The current iterator

torchbearer.state.LOADER = loader
The batch loader which handles formatting data from each batch

torchbearer.state.LOSS = loss
The current value for the loss

torchbearer.state.MAX_EPOCHS = max_epochs
The total number of epochs to run for

torchbearer.state .METRICS = metrics
The metric dict from the current batch of data

torchbearer.state.METRIC_LIST = metric list
The list of metrics in use by the Trial

torchbearer.state.MIXUP_LAMBDA = mixup_lambda
The lambda coefficient of the linear combination of inputs

torchbearer.state.MIXUP_PERMUTATION = mixup permutation
The permutation of input indices for input mixup

torchbearer.state.MODEL = model
The PyTorch module / model that will be trained

torchbearer.state.OPTIMIZER = optimizer
The optimizer to use when model fitting

torchbearer.state.PREDICTION = y_pred
The current batch of predictions

torchbearer.state.SAMPLER = sampler
The sampler which loads data from the generator onto the correct device

torchbearer.state.SELF = self
A self refrence to the Trial object for persistence etc.

torchbearer.state.STEPS = steps
The current number of steps per epoch

torchbearer.state.STOP_TRAINING = stop_training
A flag that can be set to true to stop the current fit call

torchbearer.state.TARGET = y_true
The current batch of ground truth data

torchbearer.state.TEST _DATA = test_data
The flag representing test data

torchbearer.state.TEST_GENERATOR = test_generator
The test data generator in the Trial object
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torchbearer.state.TEST_STEPS = test_steps

The number of test steps to take

torchbearer.state.TIMINGS = timings

The timings keys used by the timer callback

torchbearer.state.TRAIN DATA = train_data

The flag representing train data

torchbearer.state.TRAIN_GENERATOR = train_generator

The train data generator in the Trial object

torchbearer.state.TRAIN_STEPS = train_steps

The number of train steps to take

torchbearer.state.VALIDATION DATA = validation_data

The flag representing validation data

torchbearer.state.VALIDATION_GENERATOR = validation_generator

The validation data generator in the Trial object

torchbearer.state.VALIDATION_STEPS = validation_steps

The number of validation steps to take

torchbearer.state.VERSION = torchbearer version

The torchbearer version

torchbearer.state.X = x

The current batch of inputs

torchbearer.state.Y PRED = y_ pred

The current batch of predictions

torchbearer.state.Y_TRUE = y_true

The current batch of ground truth data

6.3 Utilities

class torchbearer.cv_utils.DatasetValidationSplitter (dataset_len, split_fraction,

shuffle_seed=None)
Generates training and validation split indicies for a given dataset length and creates training and validation

datasets using these splits
Parameters
* dataset_1len - The length of the dataset to be split into training and validation
* split_fraction — The fraction of the whole dataset to be used for validation
* shuffle_seed - Optional random seed for the shuffling process

get_train_dataset (dataset)
Creates a training dataset from existing dataset

Parameters dataset (torch.utils.data.Dataset)— Datasetto be splitinto a training
dataset

Returns Training dataset split from whole dataset

Return type torch.utils.data.Dataset
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get_val_dataset (dataset)
Creates a validation dataset from existing dataset

Args: dataset (torch.utils.data.Dataset): Dataset to be split into a validation dataset
Returns Validation dataset split from whole dataset
Return type torch.utils.data.Dataset

class torchbearer.cv_utils.SubsetDataset (dataset, ids)
Dataset that consists of a subset of a previous dataset

Parameters
* dataset (torch.utils.data.Dataset)— Complete dataset
e ids (11ist) - List of subset IDs

torchbearer.cv_utils.get_train_valid_sets (x, y, validation_data, validation_split, shuf-
fle=True)
Generate validation and training datasets from whole dataset tensors

Parameters
* x (torch. Tensor) — Data tensor for dataset
e y(torch. Tensor) — Label tensor for dataset

* validation_data ((torch.Tensor, torch.Tensor)) — Optional validation
data (x_val, y_val) to be used instead of splitting x and y tensors

* validation_split (float) — Fraction of dataset to be used for validation
* shuffle (bool) - If True randomize tensor order before splitting else do not randomize
Returns Training and validation datasets

torchbearer.cv_utils.train_valid_splitter (x,y, split, shuffle=True)
Generate training and validation tensors from whole dataset data and label tensors

Parameters
* x (torch. Tensor) — Data tensor for whole dataset
* y(torch. Tensor) — Label tensor for whole dataset
e split (float) - Fraction of dataset to be used for validation
* shuffle (bool)—If True randomize tensor order before splitting else do not randomize

Returns Training and validation tensors (training data, training labels, validation data, validation
labels)

torchbearer.bases.base_closure (x, model, y_pred, y_true, crit, loss, opt)
Function to create a standard pytorch closure using objects taken from state under the given keys.

Parameters
» x — State key under which the input data is stored
* model - State key under which the pytorch model is stored
* y_pred — State key under which the predictions will be stored
* y_true — State key under which the targets are stored

* crit — State key under which the criterion function is stored (function of state or (y_pred,
y_true))
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* loss — State key under which the loss will be stored
* opt — State key under which the optimsiser is stored
Returns Standard closure function

Return type function
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torchbearer.callbacks

7.1 Base Classes

class torchbearer.bases.Callback
Base callback class.

Note: All callbacks should override this class.

state_dict ()
Get a dict containing the callback state.

Returns A dict containing parameters and persistent buffers.
Return type dict

load_state_ dict (state_dict)
Resume this callback from the given state. Expects that this callback was constructed in the same way.

Parameters state_dict (dict) - The state dict to reload
Returns self
Return type Callback

on_init (state)
Perform some action with the given state as context at the init of a trial instance

Parameters state (dict)— The current state dict of the Trial.

on_start (state)
Perform some action with the given state as context at the start of a model fit.

Parameters state (dict)— The current state dict of the Trial.

on_start_epoch (state)
Perform some action with the given state as context at the start of each epoch.
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Parameters state (dict)— The current state dict of the Trial.

on_start_training (state)
Perform some action with the given state as context at the start of the training loop.

Parameters state (dict)— The current state dict of the Trial.

on_sample (state)
Perform some action with the given state as context after data has been sampled from the generator.

Parameters state (dict)— The current state dict of the Trial.

on_forward (state)
Perform some action with the given state as context after the forward pass (model output) has been com-
pleted.

Parameters state (dict)— The current state dict of the Trial.

on_criterion (state)
Perform some action with the given state as context after the criterion has been evaluated.

Parameters state (dict)— The current state dict of the Trial.

on_backward (state)
Perform some action with the given state as context after backward has been called on the loss.

Parameters state (dict)— The current state dict of the Trial.

on_step_training (state)
Perform some action with the given state as context after step has been called on the optimiser.

Parameters state (dict) - The current state dict of the Trial.

on_end_training (sfate)
Perform some action with the given state as context after the training loop has completed.

Parameters state (dict)— The current state dict of the Trial.

on_start_validation (state)
Perform some action with the given state as context at the start of the validation loop.

Parameters state (dict)— The current state dict of the Trial.

on_sample_validation (sfate)
Perform some action with the given state as context after data has been sampled from the validation gen-
erator.

Parameters state (dict)— The current state dict of the Trial.

on_forward validation (state)
Perform some action with the given state as context after the forward pass (model output) has been com-
pleted with the validation data.

Parameters state (dict)— The current state dict of the Trial.

on_criterion_validation (state)
Perform some action with the given state as context after the criterion evaluation has been completed with
the validation data.

Parameters state (dict)— The current state dict of the Trial.

on_step_validation (state)
Perform some action with the given state as context at the end of each validation step.

Parameters state (dict)— The current state dict of the Trial.
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on_end_validation (state)
Perform some action with the given state as context at the end of the validation loop.

Parameters state (dict) - The current state dict of the Trial.

on_end_epoch (state)
Perform some action with the given state as context at the end of each epoch.

Parameters state (dict)— The current state dict of the Trial.

on_checkpoint (state)
Perform some action with the state after all other callbacks have completed at the end of an epoch and the
history has been updated. Should only be used for taking checkpoints or snapshots and will only be called
by the run method of Trial.

Parameters state (dict)— The current state dict of the Trial.

on_end (state)
Perform some action with the given state as context at the end of the model fitting.

Parameters state (dict)— The current state dict of the Trial.

class torchbearer.callbacks.callbacks.CallbackList (callback_list)
The CallbackList classis a wrapper for a list of callbacks which acts as a single Callback and internally
calls each Callback in the given list in turn.

Parameters callback_list (1ist)— The list of callbacks to be wrapped. If the list contains a
CallbackList, this will be unwrapped.

CALLBACK_STATES = 'callback_states'
CALLBACK_TYPES = 'callback_ types'

state_dict ()
Get a dict containing all of the callback states.

Returns A dict containing parameters and persistent buffers.
Return type dict

load_state_dict (state_dict)
Resume this callback list from the given state. Callbacks must be given in the same order for this to work.

Parameters state_dict (dict) - The state dict to reload
Returns self
Return type CallbackList

copy ()

append (callback_list)

on_init (state)
Call on_init on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Trial.

on_start (state)
Call on_start on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Trial.

on_start_epoch (state)
Call on_start_epoch on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Trial.
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on_start_training (state)
Call on_start_training on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Trial.

on_sample (sfate)
Call on_sample on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Trial.

on_forward (state)
Call on_forward on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Trial.

on_criterion (state)
Call on_criterion on each callback in turn with the given state.

Parameters state (dict [str, any]) - The current state dict of the Trial.

on_backward (state)
Call on_backward on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Trial.

on_step_training (sfate)
Call on_step_training on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Trial.

on_end_training (state)
Call on_end_training on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Trial.

on_start_validation (state)
Call on_start_validation on each callback in turn with the given state.

Parameters state (dict [str,any])—- The current state dict of the Trial.

on_sample_validation (state)
Call on_sample_validation on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Trial.

on_forward validation (state)
Call on_forward_validation on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Trial.

on_criterion_validation (state)
Call on_criterion_validation on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Trial.

on_step_validation (state)
Call on_step_validation on each callback in turn with the given state.

Parameters state (dict [str,any]) - The current state dict of the Trial.

on_end_validation (state)
Call on_end_validation on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Trial.

on_end_epoch (state)
Call on_end_epoch on each callback in turn with the given state.
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Parameters state (dict [str, any])— The current state dict of the Trial.

on_checkpoint (state)
Call on_checkpoint on each callback in turn with the given state.

Parameters state (dict [str,any]) - The current state dict of the Trial.

on_end (state)
Call on_end on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Trial.

7.2 Imaging

7.2.1 Main Classes

class torchbearer.callbacks.imaging.imaging.CachingImagingCallback (key=x,
trans-
form=None,
num_images=16)
The CachingImagingCallback is an ImagingCallback which caches batches of images from the
given state key up to the required amount before passing this along with state to the implementing class, once
per epoch.

Parameters
* key (StateKey)— The StateKey containing image data (tensor of size [b, ¢, w, h])

* transform(callable, optional)-— A function/transform that takes in a Tensor and
returns a transformed version. This will be applied to the image before it is sent to output.

* num_images — The number of images to cache

on_cache (cache, state)
This method should be implemented by the overriding class to return an image from the cache.

Parameters
* cache (tensor) — The collected cache of size (num_images, C, W, H)
e state (dict)— The trial state dict

Returns The processed image

class torchbearer.callbacks.imaging.imaging.FromState (key, transform=None, decora-

tor=None)
The FromState callback is an TmagingCallback which retrieves and image from state when called. The

number of times the function is called can be controlled with a provided decorator (once_per_epoch, only_if
etc.)

Parameters
* key (StateKey)—The StateKey containing the image (tensor of size [c, w, h])

* transform(callable, optional)- A function/transform that takes in a Tensor and
returns a transformed version. This will be applied to the image before it is sent to output.

* decorator - A function which will be used to wrap the callback function.
once_per_epoch by default

on_batch (state)
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class torchbearer.callbacks.imaging.imaging.ImagingCallback (transform=None)
The TmagingCallback provides a generic interface for callbacks which yield images that should be sent to
a file, tensorboard, visdom etc. without needing bespoke code. This allows the user to easily define custom
visualisations by only writing the code to produce the image.

Parameters transform (callable, optional)— A function/transform that takes in a Ten-
sor and returns a transformed version. This will be applied to the image before it is sent to
output.

cache (num_images)
Cache images before they are passed to handlers. Once per epoch, a single cache will be returned, con-
taining the first num_images to be returned.

Parameters num_images (int)— The number of images to cache
Returns self
Return type ImagingCallback

make_grid (nrow=8, padding=2, normalize=False, norm_range=None, scale_each=False,

pad_value=0)
Use torchvision.utils.make_grid to make a grid of the images being returned by this callback. Recom-

mended for use alongside cache.

Parameters
* nrow — See torchvision.utils.make_grid
* padding - See torchvision.utils.make_grid
* normalize — See torchvision.utils.make_grid
* norm_range — See torchvision.utils.make_grid
* scale_each - See torchvision.utils.make_grid
* pad_value — See torchvision.utils.make_grid

Returns self

Return type /magingCallback

on_batch (state)

on_test ()
Process this callback for test batches

Returns self
Return type ImagingCallback

on_train()
Process this callback for training batches

Returns self
Return type ImagingCallback

on_val ()
Process this callback for validation batches

Returns self
Return type ImagingCallback

process (state)
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to_f£file (filename, index=None)
Send images from this callback to the given file

Parameters
e filename (str) — the filename to store the image to

* index (int or list or None) - if not None, only apply the handler on this index
/ list of indices

Returns self
Return type ImagingCallback

to_pyplot (index=None)
Show images from this callback with pyplot

Parameters index (int or 1list or None)-ifnot None, only apply the handler on this
index / list of indices

Returns self
Return type ImagingCallback

to_state (keys, index=None)
Put images from this callback in state with the given key

Parameters

* keys (StateKey or list[StateKey])— The state key or keys to use for the im-
ages

e index (int or list or None) - if not None, only apply the handler on this index
/ list of indices

Returns self
Return type ImagingCallback

to_tensorboard (name="Image’, log_dir="/logs’, comment="torchbearer’, index=None)
Direct images from this callback to tensorboard with the given parameters

Parameters
* name (str)— The name of the image
* log_dir (str) - The tensorboard log path for output
e comment (str)— Descriptive comment to append to path

* index (int or list or None)-if not None, only apply the handler on this index
/ list of indices

Returns self
Return type /magingCallback

to_visdom (name="Image’, log_dir="/logs’, comment="torchbearer’, visdom_params=None, in-

) ~ dex=None) ) ) )
Direct images from this callback to visdom with the given parameters

Parameters
* name (str) - The name of the image
* log_dir (str) - The visdom log path for output

e comment (str)— Descriptive comment to append to path

7.2.
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* visdom_params (VisdomParams) — Visdom parameter settings object, uses default
if None

* index (int or list or None)-if not None, only apply the handler on this index
/ list of indices

Returns self
Return type /magingCallback

with_handler (handler, index=None)
Append the given output handler to the list of handlers

Parameters
* handler — A function of image and state which stores the given image in some way

* index (int or list or None) - if not None, only apply the handler on this index
/ list of indices

Returns self

Return type ImagingCallback

class torchbearer.callbacks.imaging.imaging.MakeGrid (key=x, transform=None,
num_images=16, nrow=38,
padding=2, normal-

ize=False, norm_range=None,
scale_each=False,

pad_value=0)
The MakeGrid callback is a CachingImagingCallback which calls make grid on the cache with the
provided parameters.

Parameters
* key (StateKey)—The StateKey containing image data (tensor of size [b, ¢, w, h])

* transform(callable, optional)- A function/transform that takes in a Tensor and
returns a transformed version. This will be applied to the image before it is sent to output.

* num_images — The number of images to cache
* nrow — See torchvision.utils.make_grid

* padding - See torchvision.utils.make_grid

* normalize — See torchvision.utils.make_grid
* norm_range — See torchvision.utils.make_grid
* scale_each - See torchvision.utils.make_grid
* pad_value — See torchvision.utils.make_grid

on_cache (cache, state)
This method should be implemented by the overriding class to return an image from the cache.

Parameters
* cache (tensor) — The collected cache of size (num_images, C, W, H)
e state (dict)— The trial state dict

Returns The processed image
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7.2.2 Deep Inside Convolutional Networks

class torchbearer.callbacks.imaging.inside_cnns.ClassAppearanceModel (nclasses,

in-
put_size,

opti-
mizer_factory=<function
Clas-

SAp-

pear-

ance-
Model.<lambda>>,
steps=256,
logit_key=y_pred,
target=-

10, de-

cay=0.01,

ver-

bose=0,
in_transform=None,
trans-

form=None)

The ClassAppearanceModel callback implements Figure 1 from Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps. This is a simple gradient ascent on an image
(initialised to zero) with a sum-squares regularizer. Internally this creates a new Trial instance which then
performs the optimization.

@article{simonyan2013deep,
title={Deep inside convolutional networks: Visualising image classification,
—models and saliency maps},
author={Simonyan, Karen and Vedaldi, Andrea and Zisserman, Andrew},
journal={arXiv preprint arXiv:1312.6034},
year={2013}

Parameters

nclasses (int)— The number of output classes

input_size (tuple) — The size to use for the input image
optimizer_factory — A function of parameters which returns an optimizer to use
logit_key (StateKey)— StateKey storing the class logits

target (int) — Target class for the optimisation or RANDOM

steps (int)— Number of optimisation steps to take

decay (float)— Lambda for the L2 decay on the image

verbose (int) — Verbosity level to pass to the internal Trial instance

transform(callable, optional)- A function/transform that takes in a Tensor and
returns a transformed version. This will be applied to the image before it is sent to output

on_batch (state)

target_to_key (key)
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torchbearer.callbacks.imaging.inside_cnns.RANDOM = -10
Flag that when passed as the target chosses a random target

7.3 Model Checkpointers

class torchbearer.callbacks.checkpointers.Best (filepath="model.{epoch:02d}-
{val_loss:.2f}.pt’,
save_model_params_only=False,

monitor="val_loss’, mode="auto’,

period=1, min_delta=0,
pickle_module=<sphinx.ext.autodoc.importer._MockObject
object>,
pickle_protocol=<sphinx.ext.autodoc.importer._MockObject
object>)

Model checkpointer which saves the best model according to the given configurations. filepath can con-
tain named formatting options, which will be filled any values from state. For example: if filepath is
weights.{epoch:02d}-{val_loss:.2f}, then the model checkpoints will be saved with the epoch number and the
validation loss in the filename.

Example:

>>> from torchbearer.callbacks import Best
>>> from torchbearer import Trial
>>> import torch

# Example Trial (without optimiser or loss criterion) which uses this checkpointer

>>> model = torch.nn.Linear(1,1)

>>> checkpoint = Best ('my_path.pt', monitor='val_acc', mode='max')

>>> trial = Trial (model, callbacks=[checkpoint], metrics=['acc'])
Parameters

e filepath (str) — Path to save the model file

* save_model_params_only (bool) —If save_model_params_only=True, only model
parameters will be saved so that the results can be loaded into a PyTorch nn.Module. The
other option, save_model_params_only=False, should be used only if the results will be
loaded into a Torchbearer Trial object later.

* monitor (str)— Quantity to monitor

* mode (str)— One of {auto, min, max}. If save_best_only=True, the decision to overwrite
the current save file is made based on either the maximization or the minimization of the
monitored quantity. For val_acc, this should be max, for val_loss this should be min, etc. In
auto mode, the direction is automatically inferred from the name of the monitored quantity.

period (int) - Interval (number of epochs) between checkpoints

min_delta (float) — If save_best_only=True, this is the minimum improvement re-
quired to trigger a save

* pickle_module (module) - The pickle module to wuse, default is
‘torch.serialization.pickle’

* pickle_protocol (int) - The pickle protocol to wuse, default is
‘torch.serialization. DEFAULT_PROTOCOL’
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State Requirements:
e torchbearer.state.MODEL: Model should have the state_dict method

* torchbearer.state.METRICS: Metrics dictionary should exist, with the monitor key popu-
lated

* torchbearer.state.SELF: Self should be the torchbearer. Trial which is running this
callback
load_state_dict (state_dict)
Resume this callback from the given state. Expects that this callback was constructed in the same way.
Parameters state_dict (dict)— The state dict to reload
Returns self
Return type Callback

on_checkpoint (state)
Perform some action with the state after all other callbacks have completed at the end of an epoch and the
history has been updated. Should only be used for taking checkpoints or snapshots and will only be called
by the run method of Trial.

Parameters state (dict)— The current state dict of the Trial.

on_start (state)
Perform some action with the given state as context at the start of a model fit.

Parameters state (dict)— The current state dict of the Trial.

state_dict ()
Get a dict containing the callback state.

Returns A dict containing parameters and persistent buffers.
Return type dict

class torchbearer.callbacks.checkpointers.Interval (filepath="model.{epoch:02d}-
{val_loss:.2f}.pt’,
save_model_params_only=False,

period=1, on_batch=Fualse,
pickle_module=<sphinx.ext.autodoc.importer._MockObjec
object>,
pickle_protocol=<sphinx.ext.autodoc.importer._MockObje
object>)

Model checkpointer which which saves the model every ‘period’ epochs to the given filepath. filepath can
contain named formatting options, which will be filled any values from state. For example: if filepath is
weights.{epoch:02d}-{val_loss:.2f}, then the model checkpoints will be saved with the epoch number and the
validation loss in the filename.

Example:

>>> from torchbearer.callbacks import Interval
>>> from torchbearer import Trial
>>> import torch

# Example Trial (without optimiser or loss criterion) which uses this checkpointer
>>> model = torch.nn.Linear(1,1)

>>> checkpoint = Interval('my path.pt', period=100, on_batch=True)

>>> trial = Trial (model, callbacks=[checkpoint], metrics=['acc'])

7.3. Model Checkpointers 51



torchbearer Documentation, Release 0.5.0.dev

Parameters
* filepath (str) - Path to save the model file

* save_model_params_only (bool) — If save_model_params_only=True, only model
parameters will be saved so that the results can be loaded into a PyTorch nn.Module. The
other option, save_model_params_only=False, should be used only if the results will be
loaded into a Torchbearer Trial object later.

* period (int)— Interval (number of steps) between checkpoints
* on_batch (bool) - If true step each batch, if false step each epoch.
* period - Interval (number of epochs) between checkpoints

* pickle_module (module) - The pickle module to wuse, default is
‘torch.serialization.pickle’

* pickle protocol (int) - The pickle protocol to wuse, default is
‘torch.serialization. DEFAULT _PROTOCOL’

State Requirements:
e torchbearer.state.MODEL: Model should have the state_dict method
* torchbearer.state.METRICS: Metrics dictionary should exist

* torchbearer.state.SELF: Self should be the torchbearer. Trial which is running this
callback

load_state_dict (state_dict)
Resume this callback from the given state. Expects that this callback was constructed in the same way.

Parameters state_dict (dict)— The state dict to reload
Returns self
Return type Callback

on_checkpoint (state)
Perform some action with the state after all other callbacks have completed at the end of an epoch and the
history has been updated. Should only be used for taking checkpoints or snapshots and will only be called
by the run method of Trial.

Parameters state (dict) - The current state dict of the Trial.

state_dict ()
Get a dict containing the callback state.

Returns A dict containing parameters and persistent buffers.
Return type dict

torchbearer.callbacks.checkpointers.ModelCheckpoint (filepath="model.{epoch:02d}-
{val_loss:.2f}.pt’,
save_model_params_only=False,
monitor="val_loss’,
save_best_only=False,
mode="auto’, period=1,

min_delta=0)
Save the model after every epoch. filepath can contain named formatting options, which will be filled any values

from state. For example: if filepath is weights.{epoch:02d}-{val_loss:.2f}, then the model checkpoints will be
saved with the epoch number and the validation loss in the filename. The torch Tria I will be saved to filename.

52 Chapter 7. torchbearer.callbacks



torchbearer Documentation, Release 0.5.0.dev

Example:

>>> from torchbearer.callbacks import ModelCheckpoint
>>> from torchbearer import Trial
>>> import torch

# Example Trial (without optimiser or loss criterion) which uses this checkpointer

>>> model = torch.nn.Linear(1,1)
>>> checkpoint = ModelCheckpoint ('my_path.pt', monitor='val acc', mode='max')
>>> trial = Trial (model, callbacks=[checkpoint], metrics=['acc'])

Parameters

e filepath (str) — Path to save the model file

* save_model_params_only (bool) —If save_model_params_only=True, only model
parameters will be saved so that the results can be loaded into a PyTorch nn.Module. The
other option, save_model_params_only=False, should be used only if the results will be
loaded into a Torchbearer Trial object later.

* monitor (str)— Quantity to monitor

* save_best_only (bool) — If save_best_only=True, the latest best model according to
the quantity monitored will not be overwritten

mode (str)— One of {auto, min, max}. If save_best_only=True, the decision to overwrite
the current save file is made based on either the maximization or the minimization of the
monitored quantity. For val_acc, this should be max, for val_loss this should be min, etc. In
auto mode, the direction is automatically inferred from the name of the monitored quantity.

period (int) - Interval (number of epochs) between checkpoints

min_delta (float) — If save_best_only=True, this is the minimum improvement re-
quired to trigger a save

State Requirements:
e torchbearer.state.MODEL: Model should have the state_dict method
* torchbearer.state.METRICS: Metrics dictionary should exist

* torchbearer.state.SELF: Self should be the torchbearer. Trial which is running this
callback

class torchbearer.callbacks.checkpointers.MostRecent (filepath="model.{epoch:02d}-

{val_loss:.2f}.pt’,
save_model_params_only=False,
pickle_module=<sphinx.ext.autodoc.importer._MockOb
object>,
pickle_protocol=<sphinx.ext.autodoc.importer._MockQO
object>)

Model checkpointer which saves the most recent model to a given filepath. filepath can contain named for-

matting options, which will be filled any values from state. For example: if filepath is weights.{epoch:02d}-

{val_loss:.2f}, then the model checkpoints will be saved with the epoch number and the validation loss in the

filename.

Example:
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>>> from torchbearer.callbacks import MostRecent
>>> from torchbearer import Trial
>>> import torch

# Example Trial (without optimiser or loss criterion) which uses this checkpointer

>>> model = torch.nn.Linear(1,1)

>>> checkpoint = MostRecent ('my_path.pt')

>>> trial = Trial (model, callbacks=[checkpoint], metrics=['acc'])
Parameters

* filepath (str) — Path to save the model file

* save_model_params_only (bool) — If save_model_params_only=True, only model
parameters will be saved so that the results can be loaded into a PyTorch nn.Module. The
other option, save_model_params_only=False, should be used only if the results will be
loaded into a Torchbearer Trial object later.

* pickle_module (module) - The pickle module to wuse, default is
‘torch.serialization.pickle’

* pickle protocol (int) - The pickle protocol to wuse, default is
‘torch.serialization. DEFAULT PROTOCOL’
State Requirements:
* torchbearer.state.MODEL: Model should have the state_dict method
* torchbearer.state.METRICS: Metrics dictionary should exist
* torchbearer.state.SELF: Self should be the torchbearer. Trial which is running this

callback

on_checkpoint (state)
Perform some action with the state after all other callbacks have completed at the end of an epoch and the
history has been updated. Should only be used for taking checkpoints or snapshots and will only be called
by the run method of Trial.

Parameters state (dict)— The current state dict of the Trial.

7.4 Logging

class torchbearer.callbacks.csv_logger.CSVLogger (filename, separator=", ,
batch_granularity=False,

write_header=True, append=False)
Callback to log metrics to a given csv file.

Example:

>>> from torchbearer.callbacks import CSVLogger
>>> from torchbearer import Trial
>>> import torch

# Example Trial (without optimiser or loss criterion) which writes metrics to a_
—csv file appending to previous content

>>> logger = CSVLogger ('my_path.pt', separator=',', append=True)

>>> trial = Trial (None, callbacks=[logger], metrics=['acc'])
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Parameters
* filename (str)— The name of the file to output to
* separator (str) — The delimiter to use (e.g. comma, tab etc.)
* batch_granularity (bool) - If True, write on each batch, else on each epoch
* write_header (bool) - If True, write the CSV header at the beginning of training

* append (boo1l) - If True, append to the file instead of replacing it

State Requirements:
* torchbearer.state.EPOCH: State should have the current epoch stored

* torchbearer.state.METRICS: Metrics dictionary should exist

* torchbearer.state.BATCH: State should have the current batch stored if using

batch_granularity
on_end (state)
Perform some action with the given state as context at the end of the model fitting.
Parameters state (dict) - The current state dict of the Trial.

on_end_epoch (state)
Perform some action with the given state as context at the end of each epoch.

Parameters state (dict)— The current state dict of the Trial.

on_step_training (state)
Perform some action with the given state as context after step has been called on the optimiser.

Parameters state (dict)— The current state dict of the Trial.

class torchbearer.callbacks.printer.ConsolePrinter (validation_label_letter="v’, preci-

sion=4)
The ConsolePrinter callback simply outputs the training metrics to the console.

Example:

>>> import torch.nn
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import ConsolePrinter

# Example Trial which forgoes the usual printer for a console printer

>>> printer = ConsolePrinter ()
>>> trial = Trial (None, callbacks=[printer], verbose=0).for_steps(l).run()
0/1(t):

Parameters

* validation_label_letter (str)— Thisis the letter displayed after the epoch num-
ber indicating the current phase of training

* precision (int) — Precision of the number format in decimal places

State Requirements:
* torchbearer.state.EPOCH: The current epoch number
* torchbearer.state.MAX_EPOCHS: The total number of epochs for this run

e torchbearer.state.BATCH: The current batch / iteration number
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* torchbearer.state.STEPS: The total number of steps / batches / iterations for this epoch
* torchbearer.state.METRICS: The metrics dict to print
on_end_training (state)
Perform some action with the given state as context after the training loop has completed.
Parameters state (dict)— The current state dict of the Trial.

on_end_validation (sfate)
Perform some action with the given state as context at the end of the validation loop.

Parameters state (dict)— The current state dict of the Trial.

on_step_training (srate)
Perform some action with the given state as context after step has been called on the optimiser.

Parameters state (dict)— The current state dict of the Trial.

on_step_validation (sfate)
Perform some action with the given state as context at the end of each validation step.

Parameters state (dict)— The current state dict of the Trial.

class torchbearer.callbacks.printer.Tqdm (tgdm_module=None, validation_label_letter="v’,

precision=4, on_epoch=False, **tqgdm_args)
The Tqdm callback outputs the progress and metrics for training and validation loops to the console using
TQDM. The given key is used to label validation output.

Example:

>>> import torch.nn
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import Tgdm

# Example Trial which forgoes the usual printer for a customised tgdm printer.
>>> printer = Tgdm(precision=8)
# Note that outputs are written to stderr, not stdout as shown in this example

>>> trial = Trial (None, callbacks=[printer], verbose=0).for_steps(l).run(l)
0/1(t): 100%|...] 1/1 [00:00<00:00, 29.40it/s]
Parameters

* tgdm module — The tqdm module to use. If none, defaults to tqdm or tqdm_notebook if
in notebook

* validation_label_letter (str) - The letter to use for validation outputs.
* precision (int) — Precision of the number format in decimal places
* on_epoch (bool) - If True, output a single progress bar which tracks epochs
* tgdm_args — Any extra keyword args provided here will be passed through to the tqdm
module constructor. See github.com/tqdm/tqdm#parameters for more details.
State Requirements:

* torchbearer.state.EPOCH: The current epoch number

* torchbearer.state.MAX_EPOCHS: The total number of epochs for this run

* torchbearer.state.STEPS: The total number of steps / batches / iterations for this epoch

* torchbearer.state.METRICS: The metrics dict to print
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* torchbearer.state.HISTORY: The history of the Trial object
on_end (state)
Perform some action with the given state as context at the end of the model fitting.
Parameters state (dict)— The current state dict of the Trial.

on_end_epoch (state)
Perform some action with the given state as context at the end of each epoch.

Parameters state (dict)— The current state dict of the Trial.

on_end_training (sfate)
Update the bar with the terminal training metrics and then close.

Parameters state (dict)—-The Trial state

on_end_validation (state)
Update the bar with the terminal validation metrics and then close.

Parameters state (dict)—The Trial state

on_start (state)
Perform some action with the given state as context at the start of a model fit.

Parameters state (dict)— The current state dict of the Trial.

on_start_training (state)
Initialise the TQDM bar for this training phase.

Parameters state (dict)—-The Trial state

on_start_validation (state)
Initialise the TQDM bar for this validation phase.

Parameters state (dict)—-The Trial state

on_step_training (state)
Update the bar with the metrics from this step.

Parameters state (dict)—The Trial state

on_step_validation (state)
Update the bar with the metrics from this step.

Parameters state (dict)—-The Trial state

7.5 Tensorboard, Visdom and Others

class torchbearer.callbacks.tensor_board.AbstractTensorBoard (log_dir="/logs’,
com-
ment="torchbearer’,
visdom=Fualse, vis-

dom_params=None)
TensorBoard callback which writes metrics to the given log directory. Requires the TensorboardX library for

python.
Parameters
* log dir (str)— The tensorboard log path for output

* comment (str)— Descriptive comment to append to path
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* visdom (bool) —If true, log to visdom instead of tensorboard
* visdom _params (VisdomParams) — Visdom parameter settings object, uses default if
None
State Requirements:
* torchbearer.state.MODEL: PyTorch model
static add_metric (add_fn, tag, metric, *args, **kwargs)
Static method that recurses through metric until the add_fn can be applied. Useful when metric is an
iterable of tensors so that the tensors can all be passed to an add_n such as writer.add_scalar. For example,
if passed metric as [[A, B], [C, ], D, {‘E’: E}] then add_fn would be called on A, B, C, D and E and the

respective tags (with base tag ‘met’) would be: met_0_0, met_0_1, met_1_0, met_2, met_E. Throws a
warning if add_fn fails to parse a metric.

Parameters
* add_£n — Function to be called to log a metric, e.g. SummaryWriter.add_scalar
* tag — Tag under which to log the metric
* metric — Iterable of metrics.
* xargs — Args for add_fn
* xxkwargs — Keyword args for add_fn
Returns:

close_writer (log_dir=None)
Decrement the reference count for a writer belonging to the given log directory (or the default writer if the
directory is not given). If the reference count gets to zero, the writer will be closed and removed.

Parameters log_dir (str) — the (optional) directory

get_writer (log_dir=None, visdom=False, visdom_params=None)
Get a SummaryWriter for the given directory (or the default writer if the directory is not given). If you are
getting a SummaryWriter for a custom directory, it is your responsibility to close it using close_writer.

Parameters
* log_dir (str) - the (optional) directory

e visdom (bool) — If true, return VisdomWriter, if false return tensorboard Summary-
Writer

* visdom_params (VisdomParams) — Visdom parameter settings object, uses default
if None

Returns the SummaryWriter or VisdomWriter

on_end (state)
Perform some action with the given state as context at the end of the model fitting.

Parameters state (dict) - The current state dict of the Trial.

on_start (state)
Perform some action with the given state as context at the start of a model fit.

Parameters state (dict)— The current state dict of the Trial.
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class torchbearer.callbacks.tensor_board.TensorBoard (log_dir="/logs’,
write_graph=True,
write_batch_metrics=False,
batch_step_size=10,
write_epoch_metrics=True,
comment="torchbearer’,
visdom=False, Vis-

dom_params=None)
TensorBoard callback which writes metrics to the given log directory. Requires the TensorboardX library for

python.

Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import TensorBoard
>>> import datetime

>>> current_time = datetime.now() .strftime ('S _$H-%M-%S"'")
# Callback that will log to tensorboard under " (model name)_ (current time)"
>>> tb = TensorBoard(log_dir='./logs', write_graph=False, comment=current_time)
# Trial that will run the callback and log accuracy and loss metrics
>>> t = Trial (None, callbacks=[tb], metrics=['acc', 'loss'])

Parameters

* log_dir (str) - The tensorboard log path for output

* write_graph (bool)— If True, the model graph will be written using the TensorboardX
library

e write_batch_metrics (bool) - If True, batch metrics will be written

* batch_step_size (int) — The step size to use when writing batch metrics, make this
larger to reduce latency

* write_epoch_metrics (bool) — If True, metrics from the end of the epoch will be
written

* comment (str)— Descriptive comment to append to path
* visdom (bool) —If true, log to visdom instead of tensorboard
* visdom params (VisdomParams) — Visdom parameter settings object, uses default if
None
State Requirements:

* torchbearer.state.MODEL: PyTorch model

* torchbearer.state.EPOCH: State should have the current epoch stored

* torchbearer.state.X: State should have the current data stored if a model graph is to be built

* torchbearer.state.BATCH: State should have the current batch number stored if logging batch
metrics

* torchbearer.state.TRAIN_STEPS: State should have the number of training steps stored
* torchbearer.state.METRICS: State should have a dictionary of metrics stored

on_end (state)
Perform some action with the given state as context at the end of the model fitting.
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Parameters state (dict)— The current state dict of the Trial.

on_end_epoch (state)

Perform some action with the given state as context at the end of each epoch.

Parameters state (dict)— The current state dict of the Trial.

on_sample (state)

Perform some action with the given state as context after data has been sampled from the generator.

Parameters state (dict)— The current state dict of the Trial.

on_start_epoch (state)

Perform some action with the given state as context at the start of each epoch.

Parameters state (dict)— The current state dict of the Trial.

on_step_training (state)

Perform some action with the given state as context after step has been called on the optimiser.

Parameters state (dict)— The current state dict of the Trial.

on_step_validation (state)

Perform some action with the given state as context at the end of each validation step.

Parameters state (dict)— The current state dict of the Trial.

class torchbearer.callbacks.tensor_board.TensorBoardImages (log_dir="/logs’, com-

ment="torchbearer’,
name="Image’,
key=y_pred,
write_each_epoch=True,
num_images=16,
nrow=38, padding=2,
normalize=False,
norm_range=None,
scale_each=False,
pad_value=0, Vis-
dom=False, Vis-
dom_params=None)

The TensorBoardImages callback will write a selection of images from the validation pass to tensorboard using
the TensorboardX library and torchvision.utils.make_grid (requires torchvision). Images are selected from the
given key and saved to the given path. Full name of image sub directory will be model name + _ + comment.

Example:

>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>

from torchbearer import Trial, state_key

from torchbearer.callbacks import TensorBoardImages
import datetime

current_time = datetime.now () .strftime ('%b SH-%M-%S")
IMAGE_KEY = state_key ('image_key")

# Callback that will log to tensorboard under " (model name)_ (current time)"
tb = TensorBoardImages (comment=current_time, name='test_image', key=IMAGE_KEY)
# Trial that will run log to tensorboard images stored under IMAGE_KEY

t = Trial (None, callbacks=[tb], metrics=['acc', 'loss'])

Parameters
* log_dir (str) - The tensorboard log path for output

* comment (str)— Descriptive comment to append to path
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* name (str)— The name of the image

* key (StateKey)— The key in state containing image data (tensor of size [c, w, h] or [b, c,
w, h])

* write_each_epoch (bool) - If True, write data on every epoch, else write only for the
first epoch.

* num_images (int)— The number of images to write
* nrow — See torchvision.utils.make_grid
* padding - See torchvision.utils.make_grid
* normalize — See torchvision.utils.make_grid
* norm_range — See torchvision.utils.make_grid
* scale_each - See torchvision.utils.make_grid
* pad_value — See torchvision.utils.make_grid
* visdom (bool) — If true, log to visdom instead of tensorboard
* visdom params (VisdomParams) — Visdom parameter settings object, uses default if
None
State Requirements:
* torchbearer.state.EPOCH: State should have the current epoch stored
* key: State should have images stored under the given state key
on_end_epoch (state)
Perform some action with the given state as context at the end of each epoch.
Parameters state (dict)— The current state dict of the Trial.

on_step_validation (sfate)
Perform some action with the given state as context at the end of each validation step.

Parameters state (dict)— The current state dict of the Trial.

class torchbearer.callbacks.tensor_board.TensorBoardProjector (log_dir="/logs’,
com-
ment="torchbearer’,
num_images=100,
avg_pool_size=1,
avg_data_channels=True,
write_data=True,
write_features=True,
fea-
tures_key=y_pred)

The TensorBoardProjector callback is used to write images from the validation pass to Tensorboard using the

TensorboardX library. Images are written to the given directory and, if required, so are associated features.
Parameters
* log_dir (str)— The tensorboard log path for output
* comment (str)— Descriptive comment to append to path

* num_images (int)— The number of images to write

7.5. Tensorboard, Visdom and Others 61


https://pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_grid
https://pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_grid
https://pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_grid
https://pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_grid
https://pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_grid
https://pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_grid

torchbearer Documentation, Release 0.5.0.dev

* avg_pool_size (int) — Size of the average pool to perform on the image. This is
recommended to reduce the overall image sizes and improve latency

* avg_data_channels (bool) —If True, the image data will be averaged in the channel
dimension

* write_data (bool) - If True, the raw data will be written as an embedding
* write_features (bool) - If True, the image features will be written as an embedding
» features_key (StateKey) — The key in state to use for the embedding. Typically
model output but can be used to show features from any layer of the model.
State Requirements:
* torchbearer.state.EPOCH: State should have the current epoch stored
* torchbearer.state.X: State should have the current data stored
* torchbearer.state.Y_TRUE: State should have the current targets stored
on_end_epoch (state)
Perform some action with the given state as context at the end of each epoch.
Parameters state (dict)— The current state dict of the Trial.

on_step_validation (state)
Perform some action with the given state as context at the end of each validation step.

Parameters state (dict) - The current state dict of the Trial.

class torchbearer.callbacks.tensor_board.TensorBoardText (log_dir="/logs’,

write_epoch_metrics=True,
write_batch_metrics=False,
log_trial_summary=True,
batch_step_size=100,
comment="torchbearer’,
visdom=False, Vis-
dom_params=None)
TensorBoard callback which writes metrics as text to the given log directory. Requires the TensorboardX library
for python.

Example:

>>> from torchbearer import Trial

>>> from torchbearer.callbacks import TensorBoardText

>>> import datetime

>>> current_time = datetime.now() .strftime('% _%H-%M-%S"'")

# Callback that will log to tensorboard under " (model name)_ (current time)"

>>> tb = TensorBoardText (comment=current_time)

# Trial that will run the callback and log accuracy and loss metrics as text to
—tensorboard

>>> t = Trial (None, callbacks=[tb], metrics=['acc', 'loss'])

Parameters
* log_dir (str)— The tensorboard log path for output

* write_epoch_metrics (bool) — If True, metrics from the end of the epoch will be
written

* log_trial_summary (bool)— If True logs a string summary of the Trial
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* batch_step_size (int) — The step size to use when writing batch metrics, make this
larger to reduce latency

* comment (str)— Descriptive comment to append to path
* visdom (bool) - If true, log to visdom instead of tensorboard
* visdom_params (VisdomParams) — Visdom parameter settings object, uses default if
None
State Requirements:
* torchbearer.state.SELF: The torchbearer. Trial running this callback
* torchbearer.state.EPOCH: State should have the current epoch stored

* torchbearer.state.BATCH: State should have the current batch number stored if logging batch
metrics

* torchbearer.state.METRICS: State should have a dictionary of metrics stored
on_end (state)
Perform some action with the given state as context at the end of the model fitting.
Parameters state (dict)— The current state dict of the Trial.

on_end_epoch (state)
Perform some action with the given state as context at the end of each epoch.

Parameters state (dict) - The current state dict of the Trial.

on_start (state)
Perform some action with the given state as context at the start of a model fit.

Parameters state (dict)— The current state dict of the Trial.

on_start_epoch (state)
Perform some action with the given state as context at the start of each epoch.

Parameters state (dict)— The current state dict of the Trial.

on_step_training (state)
Perform some action with the given state as context after step has been called on the optimiser.

Parameters state (dict) - The current state dict of the Trial.
static table_formatter (string)

class torchbearer.callbacks.tensor_board.VisdomParams
Class to hold visdom client arguments. Modify member variables before initialising tensorboard callbacks for
custom arguments. See: visdom

ENDPOINT = 'events'
ENV = 'main'
HTTP_PROXY HOST = None
HTTP_PROXY_ PORT = None
IPV6 = True

None

LOG_TO_FILENAME
PORT = 8097
RAISE_EXCEPTIONS = None

7.5. Tensorboard, Visdom and Others 63


https://github.com/facebookresearch/visdom#visdom-arguments-python-only

torchbearer Documentation, Release 0.5.0.dev

SEND = True
SERVER = 'http://localhost'’
USE_INCOMING_SOCKET = True

torchbearer.callbacks.tensor_board.close_writer (log_dir, logger)
Decrement the reference count for a writer belonging to a specific log directory. If the reference count gets to
zero, the writer will be closed and removed.

Parameters
* log_dir (str)— the log directory
* logger — the object releasing the writer

torchbearer.callbacks.tensor_board.get_writer (log_dir, logger, visdom=False, vis-

dom_params=None)
Get the writer assigned to the given log directory. If the writer doesn’t exist it will be created, and a reference to

the logger added.
Parameters
* log_dir (str)— the log directory

* logger - the object requesting the writer. That object should call close_writer when its
finished

* visdom (boo1l) —if true VisdomWriter is returned instead of tensorboard SummaryWriter

* visdom params (VisdomParams) — Visdom parameter settings object, uses default if
None

Returns the SummaryWriter or VisdomWriter object

class torchbearer.callbacks.live_loss_plot.LiveLossPlot (on_batch=False,
batch_step_size=10,
on_epoch=True,
draw_once=Fulse,
**kewargs)
Callback to write metrics to LiveLossPlot, a library for visualisation in notebooks

Example:

>>> import torch.nn
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import LivelLossPlot

# Example Trial which clips all model gradients norms at 2 under the L1 norm.
>>> model = torch.nn.Linear(1,1)

>>> live_loss_plot = LiveLossPlot ()

>>> trial = Trial (model, callbacks=[live_loss_plot], metrics=['acc'])

Parameters

* on_batch (bool) — If True, batch metrics will be logged. Else batch metrics will not be
logged

* batch_step_size (int) - The number of batches between logging metrics

* on_epoch (bool)-If True, epoch metrics will be logged every epoch. Else epoch metrics
will not be logged
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* draw_once (bool) — If True, draw the plot only at the end of training. Else draw every
time metrics are logged

* kwargs — Keyword arguments for livelossplot.PlotLosses

State Requirements:
* torchbearer.state.METRICS: Metrics should be a dict containing the metrics to be plotted
* torchbearer.state.BATCH: Batch should be the current batch or iteration number in the epoch
on_end (state)
Perform some action with the given state as context at the end of the model fitting.
Parameters state (dict)— The current state dict of the Trial.

on_start (state)
Perform some action with the given state as context at the start of a model fit.

Parameters state (dict)— The current state dict of the Trial.

7.6 Early Stopping

class torchbearer.callbacks.early_stopping.EarlyStopping (monitor="val_loss’,
min_delta=0, pa-
tience=0, mode="auto’,

step_on_batch=False)
Callback to stop training when a monitored quantity has stopped improving.

Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import EarlyStopping

# Example Trial which does early stopping if the validation accuracy drops below,_
—the max seen for 5 epochs in a row

>>> stopping = EarlyStopping (monitor='val acc', patience=5, mode='max'")

>>> trial = Trial (None, callbacks=[stopping], metrics=['acc'])

Parameters
* monitor (str)— Name of quantity in metrics to be monitored

* min_delta (float)— Minimum change in the monitored quantity to qualify as an im-
provement, i.e. an absolute change of less than min_delta, will count as no improvement.

* patience (int) — Number of epochs with no improvement after which training will be
stopped.

* mode (str)— One of {auto, min, max}. In min mode, training will stop when the quantity
monitored has stopped decreasing; in max mode it will stop when the quantity monitored
has stopped increasing; in auto mode, the direction is automatically inferred from the name
of the monitored quantity.

State Requirements:

* torchbearer.state.METRICS: Metrics should be a dict containing the given monitor key as a
minimum
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load_state_ dict (state_dict)
Resume this callback from the given state. Expects that this callback was constructed in the same way.

Parameters state_dict (dict) - The state dict to reload
Returns self
Return type Callback

on_end_epoch (state)

on_step_training (state)

state_dict ()
Get a dict containing the callback state.

Returns A dict containing parameters and persistent buffers.
Return type dict

step (state)

class torchbearer.callbacks.terminate_on_nan.TerminateOnNaN (monitor="running_loss’)

Callback which montiors the given metric and halts training if its value is nan or inf.

Example:

>>> import torch.nn
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import TerminateOnNaN

# Example Trial which terminates on a NaN, forced by a separate callback.
—Terminates on the 11th batch since
the running loss only updates every 10 iterations.
>>> term = TerminateOnNaN (monitor='running loss')
>>> @torchbearer.callbacks.on_criterion
def force_terminate (state):

if state[torchbearer.BATCH] == 5:
C. state[torchbearer.LOSS] = state[torchbearer.LOSS] * torch.
—Tensor ([float ('NaN")])
>>> trial = Trial (None, callbacks=[term, force_terminate], metrics=["'loss'],

—verbose=2) .for_steps (30) .run (1)
Invalid running_loss, terminating

Parameters monitor (str)— The name of the metric to monitor

State Requirements:
* torchbearer.state.METRICS: Metrics should be a dict containing at least the key monitor
on_end_epoch (state)
Perform some action with the given state as context at the end of each epoch.
Parameters state (dict)— The current state dict of the Trial.

on_step_training (state)
Perform some action with the given state as context after step has been called on the optimiser.

Parameters state (dict)— The current state dict of the Trial.

on_step_validation (state)
Perform some action with the given state as context at the end of each validation step.
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Parameters state (dict)— The current state dict of the Trial.

7.7 Gradient Clipping

class torchbearer.callbacks.gradient_clipping.GradientClipping (clip_value,

params=None)
GradientClipping callback, which uses ‘torch.nn.utils.clip_grad_value_’ to clip the gradients of the given pa-

rameters to the given value. If params is None they will be retrieved from state.

Example:

>>> import torch.nn
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import GradientClipping

# Example Trial which clips all model gradients at 2 under the L1 norm.

>>> model = torch.nn.Linear(1,1)

>>> clip = GradientNormClipping (2, 1)

>>> trial = Trial (model, callbacks=[clip], metrics=['acc'])
Parameters

* clip_value (float or int) - maximum allowed value of the gradients The gradi-
ents are clipped in the range [-clip_value, clip_value]

e params (Iterable[Tensor] or Tensor, optional) — an iterable of Tensors
or a single Tensor that will have gradients normalized, otherwise this is retrieved from state
State Requirements:
* torchbearer.state.MODEL: Model should have the parameters method
on_backward (state)

Between the backward pass (which computes the gradients) and the step call (which updates the parame-
ters), clip the gradient.

Parameters state (dict)—The Trial state

on_start (state)
If params is None then retrieve from the model.

Parameters state (dict)—The Trial state

class torchbearer.callbacks.gradient_clipping.GradientNormClipping (max_norm,
norm_type=2,

params=None)
GradientNormClipping callback, which uses ‘torch.nn.utils.clip_grad_norm_’ to clip the gradient norms to the

given value. If params is None they will be retrieved from state.

Example:

>>> import torch.nn
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import GradientNormClipping

# Example Trial which clips all model gradients norms at 2 under the L1 norm.
>>> model = torch.nn.Linear(1,1)

(continues on next page)
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>>> clip = GradientNormClipping (2, 1)
>>> trial = Trial (model, callbacks=[clip], metrics=['acc'])

Parameters
* max_norm(float or int)-max norm of the gradients

* norm_type (float or int) — type of the used p-norm. Can be 'inf' for infinity
norm.

e params (Iterable[Tensor] or Tensor, optional) — an iterable of Tensors
or a single Tensor that will have gradients normalized, otherwise this is retrieved from state

State Requirements:
* torchbearer.state.MODEL: Model should have the parameters method

on_backward (state)

Between the backward pass (which computes the gradients) and the step call (which updates the parame-
ters), clip the gradient.

Parameters state (dict)—-The Trial state

on_start (state)
If params is None then retrieve from the model.

Parameters state (dict)—-The Trial state

7.8 Learning Rate Schedulers

class torchbearer.callbacks.torch_scheduler.CosineAnnealingLR (7_max,
eta_min=0,
last_epoch=-1,

step_on_batch=False)
Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import CosineAnnealingLR

>>> # Example scheduler which uses cosine learning rate annealing - see PyTorch,,
—docs

>>> scheduler = MultiStepLR(milestones=[30,80], gamma=0.1)

>>> trial = Trial (None, callbacks=[scheduler], metrics=['loss'], verbose=2).for_

—steps (10) .run (1)

Parameters step_on_batch (bool) — If True, step will be called on each training iteration
rather than on each epoch

See: PyTorch CosineAnnealingL.R

68 Chapter 7. torchbearer.callbacks



http://pytorch.org/docs/master/optim.html#torch.optim.lr_scheduler.CosineAnnealingLR

torchbearer Documentation, Release 0.5.0.dev

class torchbearer.callbacks.torch_scheduler.CyclicLR (base_lr, max_lr,
monitor="val_loss’,
step_size_up=2000,
step_size_down=None,
mode="triangular’,
gamma=1.0, scale_fn=None,
scale_mode="cycle’, cy-
cle_momentum=True,
base_momentum=0.8,
max_momentum=0.9,
last_epoch=-1,

step_on_batch=False)
Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import CyclicLR

>>> # Example scheduler which cycles the learning rate between 0.01 and 0.1

>>> scheduler = CyclicLR(0.01, 0.1)

>>> trial = Trial (None, callbacks=[scheduler], metrics=['loss'], verbose=2).for_
—steps (10) .for_val_steps (10) .run (1)

Parameters

* monitor (str) — The name of the quantity in metrics to monitor. (Default value =
‘val_loss’)

* step_on_batch (bool) — If True, step will be called on each training iteration rather
than on each epoch

See: PyTorch ReduceLROnPlateau

class torchbearer.callbacks.torch_scheduler.ExponentialLR (gamma, last_epoch=-1,

step_on_batch=False)
Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import ExponentiallR

>>> # Example scheduler which multiplies the learning rate by 0.1 every epoch
>>> scheduler = ExponentiallLlR (gamma=0.1)

>>> trial = Trial (None, callbacks=[scheduler], metrics=['loss'], verbose=2).for_
—steps (10) .run (1)

Parameters step_on_batch (bool) — If True, step will be called on each training iteration
rather than on each epoch

See: PyTorch Exponential LR

class torchbearer.callbacks.torch_scheduler.LambdaLR (Ir_lambda, last_epoch=-1,

step_on_batch=False)
Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import LambdalLR

(continues on next page)
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# Example Trial which performs the two learning rate lambdas from the PyTorch docs
>>> lambdal lambda epoch: epoch // 30

>>> lambda2 = lambda epoch: 0.95 %% epoch

>>> scheduler = LambdalLR (lr_lambda=[lambdal, lambda2])

>>> trial = Trial (None, callbacks=[scheduler], metrics=['loss'], verbose=2).for_
—steps (10) .run (1)

Parameters step_on_batch (bool) — If True, step will be called on each training iteration
rather than on each epoch

See: PyTorch LambdalLR

class torchbearer.callbacks.torch_scheduler.MultiStepLR (milestones, gamma=0.1,
last_epoch=-1,
step_on_batch=False)
Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import MultiStepLR

>>> # Assuming optimizer uses lr = 0.05 for all groups
>>> # 1r = 0.05 if epoch < 30
>>> # 1r = 0.005 if 30 <= epoch < 80

>>> # 1r = 0.0005 if epoch >= 80

>>> scheduler = MultiStepLR(milestones=[30,80], gamma=0.1)

>>> trial = Trial (None, callbacks=[scheduler], metrics=['loss'], verbose=2).for_
—steps (10) .run (1)

Parameters step_on_batch (bool) — If True, step will be called on each training iteration
rather than on each epoch

See: PyTorch MultiStepLR

class torchbearer.callbacks.torch_scheduler.ReduceLROnPlateau (monitor="val_loss’,
mode="min’,
factor=0.1,
patience=10, ver-
bose=Fulse,
thresh-
0ld=0.0001,
thresh-
old_mode="rel’,
cooldown=0,
min_Ir=0,
eps=1e-08,
step_on_batch=False)

Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import ReducelLROnPlateau

>>> # Example scheduler which divides the learning rate by 10 on plateaus of 5
—epochs without significant

(continues on next page)
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>>> # validation loss decrease, in order to stop overshooting the local minima._

—new_lr = 1r * factor
>>> scheduler = ReducelROnPlateau (monitor='val loss', factor=0.1, patience=5)
>>> trial = Trial (None, callbacks=[scheduler], metrics=['loss'], verbose=2).for__

—steps (10) .for_val_steps(10).run(1l)

Parameters

* monitor (str) — The name of the quantity in metrics to monitor. (Default value =
‘val_loss’)

* step_on_batch (bool) — If True, step will be called on each training iteration rather
than on each epoch

See: PyTorch ReduceLROnPlateau

class torchbearer.callbacks.torch_scheduler.StepLR (step_size, gamma=0.1,
last_epoch=-1,

step_on_batch=False)
Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import StepLR

>>> # Assuming optimizer uses lr = 0.05 for all groups

>>> # 1lr = 0.05 if epoch < 30

>>> # 1r = 0.005 if 30 <= epoch < 60

>>> # 1lr = 0.0005 if 60 <= epoch < 90

>>> scheduler = StepLR(step_size=30, gamma=0.1)

>>> trial = Trial (None, callbacks=[scheduler], metrics=['loss'], verbose=2).for_

—steps (10) .run (1)

Parameters step_on_batch (bool) — If True, step will be called on each training iteration
rather than on each epoch

See: PyTorch StepLR

class torchbearer.callbacks.torch_scheduler.TorchScheduler (scheduler_builder,
monitor=None,
step_on_batch=False)

on_end_epoch (state)
Perform some action with the given state as context at the end of each epoch.

Parameters state (dict) - The current state dict of the Trial.

on_sample (sfate)
Perform some action with the given state as context after data has been sampled from the generator.

Parameters state (dict)— The current state dict of the Trial.

on_start (state)
Perform some action with the given state as context at the start of a model fit.

Parameters state (dict)— The current state dict of the Trial.

on_start_training (state)
Perform some action with the given state as context at the start of the training loop.
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Parameters state (dict)— The current state dict of the Trial.

on_step_training (state)
Perform some action with the given state as context after step has been called on the optimiser.

Parameters state (dict) - The current state dict of the Trial.

7.9 Learning Rate Finders

7.10 Weight Decay

class torchbearer.callbacks.weight_decay.LlWeightDecay (rate=0.0005,

params=None)
WeightDecay callback which uses an L1 norm with the given rate and parameters. If params is None (default)

then the parameters will be retrieved from the model.

Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import LlWeightDecay

# Example Trial which runs a trial with weight decay on the model using an L1 norm
>>> decay = LlWeightDecay ()

>>> trial = Trial (None, callbacks=[decay], metrics=['loss'], verbose=2).for_
—steps (10) .run (1)

Parameters
* rate (float)— The decay rate or lambda
e params (Iterable[Tensor] or Tensor, optional) — an iterable of Tensors
or a single Tensor that will have gradients normalized, otherwise this is retrieved from state
State Requirements:
* torchbearer.state.MODEL: Model should have the parameters method
* torchbearer.state.LOSS: Loss should be a tensor that can be incremented

class torchbearer.callbacks.weight_decay.L2WeightDecay (rate=0.0005,

params=None)
WeightDecay callback which uses an L2 norm with the given rate and parameters. If params is None (default)

then the parameters will be retrieved from the model.

Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import L2WeightDecay

# Example Trial which runs a trial with weight decay on the model using an L2 norm
>>> decay = L2WeightDecay ()

>>> trial = Trial (None, callbacks=[decay], metrics=['loss'], verbose=2).for_
—steps (10) .run (1)

Parameters

* rate (float) - The decay rate or lambda
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e params (Iterable[Tensor] or Tensor, optional) — an iterable of Tensors
or a single Tensor that will have gradients normalized, otherwise this is retrieved from state
State Requirements:
* torchbearer.state.MODEL: Model should have the parameters method
* torchbearer.state.LOSS: Loss should be a tensor that can be incremented

class torchbearer.callbacks.weight_decay.WeightDecay (rate=0.0005, p=2,

params=None)
Create a WeightDecay callback which uses the given norm on the given parameters and with the given decay

rate. If params is None (default) then the parameters will be retrieved from the model.

Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import WeightDecay

# Example Trial which runs a trial with weight decay on the model

>>> decay = WeightDecay ()

>>> trial = Trial (None, callbacks=[decay], metrics=['loss'], verbose=2).for_
—steps (10) .run (1)

Parameters
* rate (float)— The decay rate or lambda
* p (int)— The norm level
* params (Iterable[Tensor] or Tensor, optional) — an iterable of Tensors
or a single Tensor that will have gradients normalized, otherwise this is retrieved from state
State Requirements:
* torchbearer.state.MODEL: Model should have the parameters method
* torchbearer.state.LOSS: Loss should be a tensor that can be incremented
on_criterion (state)
Calculate the decay term and add to state[ ‘loss’].
Parameters state (dict)-The Trial state

on_start (state)
Retrieve params from state[ ‘model’] if required.

Parameters state (dict)—The Trial state

7.11 Weight / Bias Initialisation

class torchbearer.callbacks.init.KaimingNormal (a=0, mode="fan_in’, nonlinear-
ity="leaky_relu’, modules=None,
targets=[’Conv’, ’Linear’, ’Bilinear’])
Kaiming Normal weight initialisation. Uses torch.nn.init.kaiming_normal_ on the weight at-
tribute of the filtered modules.

Example:
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>>> import torch

>>> import torch.nn as nn

>>> from torchbearer import Trial

>>> from torchbearer.callbacks.init import KaimingNormal

# 100 random data points

>>> data = torch.rand (100, 3, 5, 5)
>>> example_batch = datal:3]

>>> initialiser = KaimingNormal ()

# Model and trail using kaiming init for some random data
>>> model = nn.Sequential (nn.Conv2d(3, 1, 3), nn.ReLU())
>>> trial = Trial (model, callbacks=[initialiser]) .with_train_data (data, data+5h)

@inproceedings{he2015delving,
title={Delving deep into rectifiers: Surpassing human-level performance on_
—imagenet classification},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoging and Sun, Jian},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={1026--1034},
year={2015}

Parameters
* a (int) - See PyTorch kaiming_uniform_
* mode (str)— See PyTorch kaiming_uniform_
* nonlinearity (str)— See PyTorch kaiming_uniform_

e modules (Iterable[nn.Module] or nn.Module, optional)— an iterable of
nn.Modules or a single nn.Module that will have weights initialised, otherwise this is re-
trieved from the model

* targets (list[String]) — A list of lookup strings to match which modules will be
initialised

See: ‘PyTorch kaiming_normal_*_

class torchbearer.callbacks.init.KaimingUniform(a=0, mode="fan_in’,  nonlinear-
ity="leaky_relu’, modules=None,
targets=["Conv’, ’Linear’, ’Bilin-
ear’])

Kaiming Uniform weight initialisation. Uses torch.nn.init.kaiming_uniform_ on the weight at-
tribute of the filtered modules.

Example:

>>> import torch

>>> import torch.nn as nn

>>> from torchbearer import Trial

>>> from torchbearer.callbacks.init import KaimingUniform

# 100 random data points

>>> data = torch.rand (100, 3, 5, 5)
>>> example_batch = datal:3]

>>> initialiser = KaimingUniform()

(continues on next page)
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(continued from previous page)

# Model and trail using kaiming init for some random data
>>> model = nn.Sequential (nn.Conv2d(3, 1, 3), nn.RelLU())
>>> trial = Trial (model, callbacks=[initialiser]) .with_train_data(data, data+bh)

@inproceedings{he2015delving,
title={Delving deep into rectifiers: Surpassing human-level performance on_
—imagenet classification},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoging and Sun, Jian},
booktitle={Proceedings of the IEEE international conference on computer wvision},
pages={1026--1034},
year={2015}

Parameters
* a (int) - See PyTorch kaiming_uniform_
* mode (str)— See PyTorch kaiming_uniform_
* nonlinearity (str) - See PyTorch kaiming_uniform_

* modules (Iterable[nn.Module] or nn.Module, optional)- aniterable of
nn.Modules or a single nn.Module that will have weights initialised, otherwise this is re-
trieved from the model

* targets (1ist[String]) — A list of lookup strings to match which modules will be
initialised

See: PyTorch kaiming_uniform_

class torchbearer.callbacks.init.LsuvInit (data_item, weight_lambda=None,
needed_std=1.0, std_tol=0.1,

max_attempts=10, do_orthonorm=True)
Layer-sequential unit-variance (LSUV) initialization as described in All you need is a good init and modified

from the code by ducha-aiki. To be consistent with the paper, LsuvInit should be preceeded by a ZeroBias init
on the Linear and Conv layers.

Example:

>>> import torch

>>> import torch.nn as nn

>>> from torchbearer import Trial

>>> from torchbearer.callbacks.init import LsuvInit

# 100 random data points

>>> data = torch.rand (100, 3, 5, 5)
>>> example_batch = datal:3]

>>> lsuv = LsuvInit (example_batch)

# Model and trail using lsuv init for some random data
>>> model = nn.Sequential (nn.Conv2d(3, 1, 3), nn.RelLU())
>>> trial = Trial (model, callbacks=[lsuv]) .with_train_data(data, data+5)

@article{mishkin2015all,
title={All you need is a good init},

(continues on next page)
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author={Mishkin, Dmytro and Matas, Jiri},
journal={arXiv preprint arXiv:1511.06422},
year={2015}

Parameters
* data_item(torch. Tensor) — A representative data item to put through the model

* weight_lambda (lambda) — A function that takes a module and returns the weight
attribute. If none defaults to module.weight.

* needed_std - See paper, where needed_std is always 1.0
e std_tol - See paper, Tol_{var}
* max_attempts — See paper, T_{max}

* do_orthonorm - See paper, first pre-initialise with orthonormal matricies

State Requirements:
* torchbearer.state.MODEL: Model should have the modules method if modules is None
on_init (state)
Perform some action with the given state as context at the init of a trial instance
Parameters state (dict)— The current state dict of the Trial.

class torchbearer.callbacks.init.WeightInit (initialiser=<function Weight-
Init.<lambda>>,  modules=None,  tar-
gets=[’Conv’, ’Linear’, ’Bilinear’])
Base class for weight initialisations. Performs the provided function for each module when on_init is called.

Parameters
* initialiser (lambda)— a function which initialises an nn.Module inplace

* modules (Iterable[nn.Module] or nn.Module, optional)— an iterable of
nn.Modules or a single nn.Module that will have weights initialised, otherwise this is re-
trieved from the model

* targets (list[String]) — A list of lookup strings to match which modules will be
initialised

State Requirements:

* torchbearer.state.MODEL: Model should have the modules method if modules is None
on_init (state)

Perform some action with the given state as context at the init of a trial instance
Parameters state (dict)— The current state dict of the Trial.
class torchbearer.callbacks.init.XavierNormal (gain=1, modules=None, targets=[ Conv’,
’Linear’, ’Bilinear’])

Xavier Normal weight initialisation. Uses torch.nn.init.xavier_normal_ on the weight attribute

of the filtered modules.

Example:
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>>> import torch

>>> import torch.nn as nn

>>> from torchbearer import Trial

>>> from torchbearer.callbacks.init import XavierNormal

# 100 random data points

>>> data = torch.rand (100, 3, 5, 5)
>>> example_batch = datal:3]

>>> initialiser = XavierNormal ()

# Model and trail using Xavier init for some random data
>>> model = nn.Sequential (nn.Conv2d(3, 1, 3), nn.ReLU())
>>> trial = Trial (model, callbacks=[initialiser]) .with_train_data (data, data+5h)

@inproceedings{glorot2010understanding,

title={Understanding the difficulty of training deep feedforward neural
—networks},

author={Glorot, Xavier and Bengio, Yoshua},

booktitle={Proceedings of the thirteenth international conference on artificial,
—~intelligence and statistics},

pages={249--256},

year={2010}

Parameters
* gain (int)— See PyTorch xavier_normal_

* modules (Iterable[nn.Module] or nn.Module, optional)— aniterable of
nn.Modules or a single nn.Module that will have weights initialised, otherwise this is re-
trieved from the model

* targets (list [String]) — A list of lookup strings to match which modules will be
initialised
See: PyTorch xavier_normal_
class torchbearer.callbacks.init.XavierUniform (gain=1, modules=None, tar-
gets=["Conv’, ’Linear’, ’Bilinear’])
Xavier Uniform weight initialisation. Uses torch.nn.init.xavier_uniform_onthe weight attribute

of the filtered modules.

Example:

>>> import torch

>>> import torch.nn as nn

>>> from torchbearer import Trial

>>> from torchbearer.callbacks.init import XavierUniform

# 100 random data points

>>> data = torch.rand (100, 3, 5, 5)
>>> example_batch = datal:3]

>>> initialiser = XavierUniform()

# Model and trail using Xavier init for some random data
>>> model = nn.Sequential (nn.Conv2d(3, 1, 3), nn.ReLU())
>>> trial = Trial (model, callbacks=[initialiser]) .with_train_data(data, data+b)
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@inproceedings{glorot20l0understanding,

title={Understanding the difficulty of training deep feedforward neural
—networks},

author={Glorot, Xavier and Bengio, Yoshua},

booktitle={Proceedings of the thirteenth international conference on artificial
—~intelligence and statistics},

pages={249--256},

year={2010}

Parameters
* gain (int) - See PyTorch xavier_normal_

* modules (Iterable[nn.Module] or nn.Module, optional)- aniterable of
nn.Modules or a single nn.Module that will have weights initialised, otherwise this is re-
trieved from the model

* targets (list [String]) — A list of lookup strings to match which modules will be
initialised
See: ‘PyTorch xavier_uniform_°¢_

class torchbearer.callbacks.init.ZeroBias (modules=None, targets=[ Conv’, ’Linear’, ’Bi-

linear’])
Zero initialisation for the bias attributes of filtered modules. This is recommended for use in conjunction with

weight initialisation schemes.

Example:

>>> import torch

>>> import torch.nn as nn

>>> from torchbearer import Trial

>>> from torchbearer.callbacks.init import ZeroBias

# 100 random data points

>>> data = torch.rand (100, 3, 5, 5)
>>> example_batch = datal:3]

>>> initialiser = ZeroBias ()

# Model and trail using zero bias init for some random data

>>> model = nn.Sequential (nn.Conv2d(3, 1, 3), nn.ReLU())
>>> trial = Trial (model, callbacks=[initialiser]).with_train_data(data, data+b)
Parameters

* modules (Iterable[nn.Module] or nn.Module, optional)— aniterable of
nn.Modules or a single nn.Module that will have weights initialised, otherwise this is re-
trieved from the model

* targets (list [String]) — A list of lookup strings to match which modules will be
initialised
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7.12 Regularisers

class torchbearer.callbacks.cutout.Cutout (n_holes, length, constant=0.0, seed=None)
Cutout callback which randomly masks out patches of image data. Implementation a modified version of the
code found here.

Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import Cutout

# Example Trial which does Cutout regularisation
>>> cutout = Cutout (1, 10)
>>> trial = Trial (None, callbacks=[cutout], metrics=['acc'])

@article{devries2017improved,
title={Improved regularization of convolutional neural networks with Cutout},
author={DeVries, Terrance and Taylor, Graham W},
journal={arXiv preprint arXiv:1708.04552},
year={2017}

Parameters
* n_holes (int)— Number of patches to cut out of each image.
* length (int)— The length (in pixels) of each square patch.
* constant (float)— Constant value for each square patch

¢ seed - Random seed

State Requirements:
* torchbearer.state.X: State should have the current data stored
on_sample (state)
Perform some action with the given state as context after data has been sampled from the generator.
Parameters state (dict)— The current state dict of the Trial.

class torchbearer.callbacks.cutout.RandomErase (n_holes, length, seed=None)
Random erase callback which replaces random patches of image data with random noise. Implementation a
modified version of the cutout code found here.

Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import RandomErase

# Example Trial which does Cutout regularisation
>>> erase = RandomErase(l, 10)
>>> trial = Trial (None, callbacks=[erase], metrics=['acc'])

@article{zhong20l17random,
title={Random erasing data augmentation},
author={Zhong, Zhun and Zheng, Liang and Kang, Guoliang and Li, Shaozi and Yang,

(continues on next page)
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journal={arXiv preprint arXiv:1708.04896},
year={2017}

Parameters
* n_holes (int)— Number of patches to cut out of each image.
* length (int)— The length (in pixels) of each square patch.

¢ seed - Random seed

State Requirements:
* torchbearer.state.X: State should have the current data stored
on_sample (state)
Perform some action with the given state as context after data has been sampled from the generator.
Parameters state (dict) - The current state dict of the Trial.

class torchbearer.callbacks.cutout.CutMix (alpha, classes=-1, seed=None)
Cutmix callback which replaces a random patch of image data with the corresponding patch from another
image. This callback also converts labels to one hot before combining them according to the lambda parameters,
sampled from a beta distribution as is done in the paper.

Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import CutMix

# Example Trial which does CutMix regularisation
>>> cutmix = CutMix (1, classes=10)
>>> trial Trial (None, callbacks=[cutmix], metrics=['acc'])

@article{yun2019cutmix,

title={Cutmix: Regularization strategy to train strong classifiers with_
—localizable features},

author={Yun, Sangdoo and Han, Dongyoon and Oh, Seong Joon and Chun, Sanghyuk,
—and Choe, Junsuk and Yoo, Youngjoon},

journal={arXiv preprint arXiv:1905.04899},

year={2019}

Parameters
* alpha (float) - The alpha value for the beta distribution.
* classes (int)— The number of classes for conversion to one hot.

¢ seed - Random seed

State Requirements:
e torchbearer.state.X: State should have the current data stored

e torchbearer.state.Y_ TRUE: State should have the current data stored
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on_sample (sfate)
Perform some action with the given state as context after data has been sampled from the generator.

Parameters state (dict) - The current state dict of the Trial.

on_sample_validation (state)
Perform some action with the given state as context after data has been sampled from the validation gen-
erator.

Parameters state (dict)— The current state dict of the Trial.

class torchbearer.callbacks.mixup.Mixup (alpha=1.0, lam=-10.0)

Perform mixup on the model inputs. Requires use of MixupInputs.loss (), otherwise lambdas can be
found in state under MIXUP_ LAMBDA. Model targets will be a tuple containing the original target and permuted
target.

Note: The accuracy metric for mixup is different on training to deal with the different targets,

but for validation it is exactly the categorical accuracy, despite being called “val_mixup_acc”

Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import Mixup

# Example Trial which does Mixup regularisation
>>> mixup = Mixup(0.9)
>>> trial = Trial (None, criterion=Mixup.loss, callbacks=[mixup], metrics=['acc'])

@inproceedings{zhang2018mixup,

title={mixup: Beyond Empirical Risk Minimization},

author={Hongyi Zhang and Moustapha Cisse and Yann N. Dauphin and David Lopez-
—~Paz},

booktitle={International Conference on Learning Representations},

year={2018}

Parameters alpha (fIoat)— The alpha value to use in the beta distribution.

RANDOM = -10.0

static mixup_loss (state)
The standard cross entropy loss formulated for mixup (weighted combination of F.cross_entropy).

Parameters state — The current Trial state.

on_sample (state)
Perform some action with the given state as context after data has been sampled from the generator.

Parameters state (dict)— The current state dict of the Trial.

class torchbearer.callbacks.sample_pairing.SamplePairing (policy=None)
Perform SamplePairing on the model inputs. This is the process of averaging each image with another random
image without changing the targets. The key here is to use the policy function to only do this some of the time.

Example:
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>>> from torchbearer import Trial
>>> from torchbearer.callbacks import SamplePairing

# Example Trial which does Sample Pairing regularisation with the policy from the
—paper

>>> pairing = SamplePairing()

>>> trial = Trial (None, criterion=Mixup.loss, callbacks=[pairing], metrics=['acc

="'1)

@article{inoue2018data,
title={Data augmentation by pairing samples for images classification},
author={Inoue, Hiroshi},
journal={arXiv preprint arXiv:1801.02929},
year={2018}

Parameters policy — A function of state which returns True if the current batch should be paired.
static default_policy (start_epoch, end_epoch, on_epochs, off_epochs)
Return a policy which performs sample pairing according to the process defined in the paper.
Parameters
* start_epoch (int)— Epoch to start pairing on
* end_epoch (int)— Epoch to end pairing on (and begin fine-tuning)
* on_epochs (int)— Number of epochs to run sample pairing for before a break
* off_epochs (int)— Number of epochs to break for
Returns A policy function

on_sample (sfate)
Perform some action with the given state as context after data has been sampled from the generator.

Parameters state (dict)— The current state dict of the Trial.

class torchbearer.callbacks.label_smoothing.LabelSmoothingRegularisation (epsilon,

classes=-

Perform Label Smoothing Regularisation (LSR) on the targets during training. This involves converting the
target to a one-hot vector and smoothing according to the value epsilon.

Note: Requires a multi-label loss, such as nn.BCELoss

Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import LabelSmoothingRegularisation

# Example Trial which does label smoothing regularisation

>>> smoothing = LabelSmoothingRegularisation ()

>>> trial = Trial (None, criterion=nn.BCELoss (), callbacks=[smoothing], metrics=][
—~'acc'])
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@article{szegedy201l5rethinking,
title={Rethinking the inception architecture for computer vision. arXiv 2015},
author={Szegedy, Christian and Vanhoucke, Vincent and Ioffe, Sergey and Shlens,
—~Jonathon and Wojna, Zbigniew},
journal={arXiv preprint arXiv:1512.00567},
volume={1512},
year={2015}

Parameters
* epsilon (float) - The epsilon parameter from the paper
* classes (int)—The number of target classes, not required if the target is already one-hot
encoded
on_sample (sfate)
Perform some action with the given state as context after data has been sampled from the generator.
Parameters state (dict)— The current state dict of the Trial.

on_sample_validation (state)
Perform some action with the given state as context after data has been sampled from the validation gen-
erator.

Parameters state (dict)— The current state dict of the Trial.

to_one_hot (state)

7.13 Unpack State

torchbearer.callbacks.unpack_state
alias of torchbearer.callbacks.unpack_state

7.14 Decorators

7.14.1 Main

The main callback decorators simply take a function and bind it to a callback point, returning the result.

torchbearer.callbacks.decorators.on_init (func)
The on_init () decorator is used to initialise a Callback with on_init () calling the decorated function

Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import on_init

# Example callback on start
>>> @Qon_init
def print_callback (state):
print ('Initialised trial.')

>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).run()
Initialised trial.
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Parameters func (function)— The function(state) to decorate
Returns Initialised callback with on_init () calling func

Return type Callback

torchbearer.callbacks.decorators.on_start (func)

The on_start () decorator is used to initialise a Callback with on_start () calling the decorated func-
tion

Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import on_start

# Example callback on start
>>> @on_start
def print_callback (state):
print ('Starting training.')

>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).run()
Starting training.

Parameters func (function)— The function(state) to decorate
Returns Initialised callback with on_start () calling func

Return type Callback

torchbearer.callbacks.decorators.on_start_epoch (func)

The on_start_epoch () decorator is used to initialise a Callback with on_start_epoch () calling
the decorated function

Example:

>>> import torchbearer
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import on_start_epoch

# Example callback running at start of each epoch
>>> @on_start_epoch
def print_callback (state):
print ('Starting epoch .'.format (state[torchbearer .EPOCH]))

>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).run()
Starting epoch 0.

Args:
func (function): The function(state) to *decoratex

Returns Initialised callback with on_start_epoch () calling func

Return type Callback

torchbearer.callbacks.decorators.on_start_training (func)

The on_start_training () decorator is used to initialise a Callback with on_start_training/()
calling the decorated function

Example:
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>>> from torchbearer import Trial
>>> from torchbearer.callbacks import on_start_training

# Example callback running at start of the training pass
>>> @on_start_training
def print_callback (state):
print ('Starting training.')

>>> trial = Trial (None, callbacks=[print_callback]) .for_steps(l).run()
Starting training.

Parameters func (function)— The function(state) to decorate

Returns Initialised callback with on_start_training () calling func

Return type Callback
torchbearer.callbacks.decorators.on_sample (func)

The on_sample () decorator is used to initialise a Callback with on_sample () calling the decorated
function

Example:

>>> import torchbearer
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import on_sample

# Example callback running each time a sample is taken from the dataset
>>> (@on_sample
def print_callback (state):
print ('Current sample {}.'.format (state[torchbearer.X]))

>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).run()
Current sample None.

Parameters func (function) - The function(state) to decorate

Returns Initialised callback with on_sample () calling func

Return type Callback
torchbearer.callbacks.decorators.on_forward (func)

The on_forward () decorator is used to initialise a Callback with on_forward () calling the decorated
function

Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import on_forward

# Example callback running after each training forward pass of the torch model
>>> (@on_forward
def print_callback (state):
print ('Evaluated training batch.')

>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).run()
Evaluated training batch.
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Parameters func (function)— The function(state) to decorate
Returns Initialised callback with on_forward () calling func

Return type Callback

torchbearer.callbacks.decorators.on_criterion (func)

The on_criterion () decorator is used to initialise a Callback with on_criterion () calling the

decorated function

Example:

>>> import torchbearer
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import on_criterion

# Example callback running after each evaluation of the loss
>>> (@Qon_criterion
def print_callback (state):
print ('Current loss .'".format (state[torchbearer.LOSS] .item()))

>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).run()
Current loss 0.0.

Parameters func (function)— The function(state) to decorate
Returns Initialised callback with on_criterion () calling func

Return type Callback

torchbearer.callbacks.decorators.on_backward (func)

The on_backward () decorator is used to initialise a Callback with on_backward () calling the deco-

rated function

Example:

>>> from torchbearer import Trial
>>> from torchbearer.callbacks import on_backward

# Example callback running after each backward pass of the torch model
>>> @on_backward

def print_callback (state):
print ('Doing backward."')

>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).run()
Doing backward.

Parameters func (function) - The function(state) to decorate
Returns Initialised callback with on_backward () calling func

Return type Callback

torchbearer.callbacks.decorators.on_step_training (func)

The on_step_training () decorator is used to initialise a Callback with on_step training/()

calling the decorated function

Example:
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>>> import torchbearer
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import on_step_training

# Example callback running after each training step
>>> (@on_step_training
def print_callback (state):
print ('Step {/}.'.format (state[torchbearer.BATCH]))

>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).run()
Step 0.

Parameters func (function)— The function(state) to decorate
Returns Initialised callback with on_step training () calling func

Return type Callback

torchbearer.callbacks.decorators.on_end_training (func)

The on_end training () decorator is used to initialise a Callback with on_end _training () calling
the decorated function

Example:

>>> import torchbearer
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import on_end_training

# Example callback running after each training pass
>>> @Qon_end_training
def print_callback (state):
print ('Finished training pass.')

>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).run()
Finished training pass.

Parameters func (function) - The function(state) to decorate
Returns Initialised callback with on_end training () calling func

Return type Callback

torchbearer.callbacks.decorators.on_start_validation (func)

The on _start_validation() decorator is used to initialise a Callback with
on_start_validation () calling the decorated function

Example:

>>> import torchbearer
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import on_start_validation

# Example callback running when each validation pass starts.
>>> @Qon_start_validation
def print_callback (state):
print ('Starting validation.')

(continues on next page)
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>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).for_val_steps(l).
—run ()
Starting validation.

Parameters func (function) - The function(state) to decorate
Returns Initialised callback with on_start_validation () calling func

Return type Callback

torchbearer.callbacks.decorators.on_sample_validation (func)

The on_sample _validation() decorator is wused to initialise a Callback with
on_sample validation () calling the decorated function

Example:

>>> import torchbearer
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import on_sample_validation

# Example callback running after each validation sample is drawn.
>>> (@on_sample_validation
def print_callback (state):
print ('Sampled validation data {}.'.format (state[torchbearer.X]))

>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).for_val_steps(l).
—run ()
Sampled validation data None.

Parameters func (function)— The function(state) to decorate
Returns Initialised callback with on_sample validation () calling func

Return type Callback

torchbearer.callbacks.decorators.on_forward validation (func)

The on forward validation () decorator is used to initialise a Callback with
on_forward_validation () calling the decorated function

Example:

>>> import torchbearer
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import on_forward validation

# Example callback running after each torch model forward pass in validation.
>>> @on_forward _validation
def print_callback (state):
print ('Evaluated validation batch.')

>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).for_val_steps(l).
—run ()
Evaluated validation batch.

Parameters func (function) - The function(state) to decorate

Returns Initialised callback with on_ forward validation () calling func
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Return type Callback

torchbearer.callbacks.decorators.on_criterion_validation (func)
The on criterion validation() decorator is used to initialise a
on_criterion_validation () calling the decorated function

Example:

Callback with

>>> import torchbearer
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import on_criterion_validation

>>> @Qon_criterion_validation
def print_callback (state):

—run ()
Current val loss 0.0.

# Example callback running after each criterion evaluation in validation.

print ('Current val loss {/}.'.format (state[torchbearer.LOSS].item()))

>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).for_val_steps(l).

Parameters func (function) - The function(state) to decorate

Returns Initialised callback with on_criterion _validation () calling func

Return type Callback

torchbearer.callbacks.decorators.on_step_validation (func)
The on _step validation() decorator is used to initialise a
on_step_validation () calling the decorated function

Example:

Callback  with

>>> import torchbearer
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import on_step_validation

# Example callback running at the end of each validation step.
>>> Q@Qon_step_validation
def print_callback (state):

—run ()
Validation step 0.

print ('Validation step {/}.'.format (state[torchbearer.BATCH]))

>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).for_val_steps(l).

Parameters func (function)— The function(state) to decorate
Returns Initialised callback with on_step_validation () calling func

Return type Callback

torchbearer.callbacks.decorators.on_end_validation (func)

The on_end validation () decorator is used to initialise a Callback with on_end validation ()

calling the decorated function

Example:
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>>> import torchbearer
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import on_end_validation

# Example callback running at the end of each validation pass.
>>> (@on_end_validation
def print_callback (state):
print ('Finished validating.')

>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).for_val_steps(l).
—run ()
Finished validating.

Parameters func (function)— The function(state) to decorate
Returns Initialised callback with on_end validation () calling func

Return type Callback

torchbearer.callbacks.decorators.on_end_epoch (func)

The on_end _epoch () decorator is used to initialise a Callback with on_end epoch () calling the
decorated function

Example:

>>> import torchbearer
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import on_end_epoch

# Example callback running each epoch
>>> (@on_end_epoch
def print_callback (state):
print ('Finished epoch {}.'.format (state[torchbearer.EPOCH]))

>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).run()
Finished epoch 0.

Parameters func (function) - The function(state) to decorate
Returns Initialised callback with on_end_epoch () calling func

Return type Callback

torchbearer.callbacks.decorators.on_checkpoint (func)

The on_checkpoint () decorator is used to initialise a Callback with on_checkpoint () calling the
decorated function

Example:

>>> import torchbearer
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import on_checkpoint

# Example callback running at checkpoint time.
>>> @on_checkpoint
def print_callback (state):
print ('Checkpointing.")

(continues on next page)
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>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).run()
Checkpointing.

Parameters func (function) - The function(state) to decorate
Returns Initialised callback with on_checkpoint () calling func
Return type Callback
torchbearer.callbacks.decorators.on_end (func)
The on_end () decorator is used to initialise a Callback with on_end () calling the decorated function

Example:

>>> import torchbearer
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import on_end

# Example callback running after all training is finished.
>>> @Qon_end
def print_callback (state):
print ('Finished training model.')

>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).run()
Finished training model.

Parameters func (function) - The function(state) to decorate
Returns Initialised callback with on_end () calling func

Return type Callback

7.14.2 Utility

Alongside the base callback decorators that simply bind a function to a callback point, Torchbearer has a number of
utility decorators that help simplify callback construction.

torchbearer.callbacks.decorators.add to_loss (func)
The add_to_loss () decorator is used to initialise a Callback with the value returned from func being
added to the loss

Example:

>>> import torch

>>> import torchbearer

>>> from torchbearer import Trial

>>> from torchbearer.callbacks import add_to_loss

# Example callback to add a quantity to the loss each step.
>>> (@add_to_loss
def loss_callback (state):
return torch.Tensor ([1.125])

>>> trial = Trial (None, callbacks=[loss_callback], metrics=["'loss']).for_steps(l).
—run ()

>>> print (trial[0][1]['loss'])

1.125
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Parameters func (function)— The function(state) to decorate
Returns Initialised callback which adds the returned value from func to the loss
Return type Callback

torchbearer.callbacks.decorators.once (fcn)
Decorator to fire a callback once in the lifetime of the callback. If the callback is a class method, each instance
of the class will fire only once. For functions, only the first instance will fire (even if more than one function is
present in the callback list).

Example:

>>> import torchbearer
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import once, on_step_training

# Example callback to be called exactly once on the very first training step
>>> (@Qonce
@on_step_training
def print_callback (state):
print ('This happens once ever')
>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).run()
This happens once ever

Parameters fcn (function) — the torchbearer callback function to decorate.
Returns the decorator

torchbearer.callbacks.decorators.once_per_epoch (fcn)
Decorator to fire a callback once (on the first call) in any given epoch. If the callback is a class method, each
instance of the class will fire once per epoch. For functions, only the first instance will fire (even if more than
one function is present in the callback list).

Example:

>>> import torchbearer
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import once_per_epoch, on_step_training

# Example callback to be called exactly once per epoch, on the first training step
>>> (@once_per_epoch
@on_step_training
def print_callback (state):
print ('This happens once per epoch')
>>> trial = Trial (None, callbacks=[print_callback]).for_steps(l).run()
This happens once per epoch

Note: The decorated callback may exhibit unusual behaviour if it is reused

Parameters fcn (function) — the torchbearer callback function to decorate.
Returns the decorator

torchbearer.callbacks.decorators.only_ if (condition_expr)
Decorator to fire a callback only if the given conditional expression function returns True. The conditional
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expression can be a function of state or self and state. If the decorated function is not a class method (i.e. it does
not take state) the decorated function will be passed instead. This enables the storing of temporary variables.

Example:

>>> import torchbearer
>>> from torchbearer import Trial
>>> from torchbearer.callbacks import only_if, on_step_training

# Example callback to be called only when the given condition is true on each,,
—training step
>>> @only if (lambda state: state[torchbearer.BATCH] == 100)
@on_step_training
def print_callback (state):
print ('This is the 100th batch'")

>>> trial = Trial (None, callbacks=[print_callback]) .for_steps(101l).run()
This is the 100th batch

Parameters condition_expr (function (self, state) or function(self))-—a
function/lambda which takes state and optionally self that must evaluate to true for the decorated
torchbearer callback to be called. The state object passed to the callback will be passed as an
argument to the condition function.

Returns the decorator
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CHAPTER 8

torchbearer.metrics

The base metric classes exist to enable complex data flow requirements between metrics. All metrics are either
instances of Metric or MetricFactory. These can then be collected in a MetricList or a MetricTree.
The MetricList simply aggregates calls from a list of metrics, whereas the Met ricTree will pass data from its
root metric to each child and collect the outputs. This enables complex running metrics and statistics, without needing
to compute the underlying values more than once. Typically, constructions of this kind should be handled using the
decorator API.

8.1 Base Classes

class torchbearer.bases.Metric (name)
Base metric class. Process will be called on each batch, process-final at the end of each epoch. The metric
contract allows for metrics to take any args but not kwargs. The initial metric call will be given state, however,
subsequent metrics can pass any values desired.

Note: All metrics must extend this class.

Parameters name (str)— The name of the metric
eval (data_key=None)
Put the metric in eval mode during model validation.

process (*args)
Process the state and update the metric for one iteration.

Parameters args — Arguments given to the metric. If this is a root level metric, will be given
state

Returns None, or the value of the metric for this batch

process_final (*args)
Process the terminal state and output the final value of the metric.
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Parameters args — Arguments given to the metric. If this is a root level metric, will be given
state

Returns None or the value of the metric for this epoch

reset (state)
Reset the metric, called before the start of an epoch.

Parameters state (dict)— The current state dict of the Trial.

train ()
Put the metric in train mode during model training.

class torchbearer.metrics.metrics.AdvancedMetric (name)
The AdvancedMet ric class is a metric which provides different process methods for training and validation.
This enables running metrics which do not output intermediate steps during validation.

Parameters name (st r)— The name of the metric.

eval (data_key=None)
Put the metric in eval mode.

Parameters data_key (StateKey) — The torchbearer data_key, if used

process ( *args)
Depending on the current mode, return the result of either ‘process_train’ or ‘process_validate’.

Returns The metric value.

process_final (*args)
Depending on the current mode, return the result of either ‘process_final_train’ or ‘process_final_validate’.

Returns The final metric value.

process_final_train (*args)
Process the given state and return the final metric value for a training iteration.

Returns The final metric value for a training iteration.

process_final_validate (*args)
Process the given state and return the final metric value for a validation iteration.

Returns The final metric value for a validation iteration.

process_train (*args)
Process the given state and return the metric value for a training iteration.

Returns The metric value for a training iteration.

process_validate (*args)
Process the given state and return the metric value for a validation iteration.

Returns The metric value for a validation iteration.

train ()
Put the metric in train mode.

class torchbearer.metrics.metrics.MetricList (metric_list)
The MetricList class is a wrapper for a list of metrics which acts as a single metric and produces a dictionary
of outputs.

Parameters metric_list (Iist) — The list of metrics to be wrapped. If the list contains a
MetricList, this will be unwrapped. Any strings in the list will be retrieved from met-
rics. DEFAULT_METRICS.
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eval (data_key=None)
Put each metric in eval mode

process (*args)

Process each metric an wrap in a dictionary which maps metric names to values.

Returns A dictionary which maps metric names to values.
Return type dict[str,any]

process_final (*args)

Process each metric an wrap in a dictionary which maps metric names to values.

Returns A dictionary which maps metric names to values.
Return type dict[str,any]

reset (state)
Reset each metric with the given state.

Parameters state — The current state dict of the Trial.

train ()
Put each metric in train mode.

class torchbearer.metrics.metrics.MetricTree (metric)

A tree structure which has a node Met i c and some children. Upon execution, the node is called with the input

and its output is passed to each of the children. A dict is updated with the results.

Note: If the node output is already a dict (i.e. the node is a standalone metric), this is unwrapped before passing

the first value to the children.

Parameters metric (Metric)— The metric to act as the root node of the tree / subtree

add_child (child)
Add a child to this node of the tree

Parameters child (Metric)— The child to add

eval (data_key=None)
Put the metric in eval mode during model validation.

process ( *args)
Process this node and then pass the output to each child.

Returns A dict containing all results from the children

process_final (*args)
Process this node and then pass the output to each child.

Returns A dict containing all results from the children

reset (state)
Reset the metric, called before the start of an epoch.

Parameters state (dict)— The current state dict of the Trial.

train ()
Put the metric in train mode during model training.

torchbearer.metrics.metrics.add_default (key, metric, *args, **kwargs)

torchbearer.metrics.metrics.get_default (key)

8.1. Base Classes

97



torchbearer Documentation, Release 0.5.0.dev

8.2 Decorators - The Decorator API

The decorator API is the core way to interact with metrics in torchbearer. All of the classes and functionality handled
here can be reproduced by manually interacting with the classes if necessary. Broadly speaking, the decorator API is
used to construct a Met ricFactory which will build a Met ricTree that handles data flow between instances of
Mean, RunningMean, Std etc.

torchbearer.metrics.decorators.default_for_key (key, *args, **kwargs)
The default_ for _key () decorator will register the given metric in the global metric dict (met-
rics. DEFAULT_METRICS) so that it can be referenced by name in instances of MetricList such as in the
list given to the torchbearer.Model.

Example:

@default_for_key('acc')
class CategoricalAccuracy (metrics.BatchLambda) :

Parameters
* key (str)— The key to use when referencing the metric
* args — Any args to pass to the underlying metric when constructed
* kwargs — Any keyword args to pass to the underlying metric when constructed
torchbearer.metrics.decorators.lambda_metric (name, on_epoch=False)

The lambda_metric () decorator is used to convert a lambda function y_pred, y_true into a Metric in-
stance. This can be used as in the following example:

@metrics.lambda_metric ('my_metric')
def my_metric(y_pred, y_true):
# Calculate some metric

model = Model (metrics=[my_metric])

Parameters
* name (str)— The name of the metric (e.g. ‘loss’)

* on_epoch (bool) — If True the metric will be an instance of EpochLambda instead of
BatchLambda

Returns A decorator which replaces a function with a Metric
torchbearer.metrics.decorators.mean (clazz=None, dim=None)
The mean () decorator is used to add a Mean to the Met ricTree which will will output a mean value at the

end of each epoch. At build time, if the inner class is not a Met ricTree, one will be created. The Mean will
also be wrapped in a ToD1ict for simplicity.

Example:

>>> import torch
>>> from torchbearer import metrics

>>> @metrics.mean
@metrics.lambda_metric('my_metric')
def metric(y_pred, y_true):

(continues on next page)
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return y_pred + y_true

>>> metric.reset ({})

>>> metric.process ({'y_pred':torch.Tensor([2]), 'y_true':torch.Tensor([2])}) # 4
{}

>>> metric.process ({'y_pred':torch.Tensor([3]), 'y_true':torch.Tensor([3])}) # 6
{}

>>> metric.process ({'y_pred':torch.Tensor ([4]), 'y_true':torch.Tensor([4])}) # 8
{}

>>> metric.process_final ()

{'my_metric': 6.0}

Parameters
* clazz — The class to decorate
e dim (int, tuple)-See Mean
Returns A MetricTree with a Mean appended or a wrapper class that extends MetricTree

torchbearer.metrics.decorators.running_mean (clazz=None, batch_size=50, step_size=10,

dim=None)
The running mean () decorator is used to add a RunningMean to the MetricTree. If the inner class

is not a MetricTree then one will be created. The RunningMean will be wrapped in a ToDict (with
‘running_’ prepended to the name) for simplicity.

Note: The decorator function does not need to be called if not desired, both: @running_mean and @run-
ning_mean() are acceptable.

Example:

>>> import torch
>>> from torchbearer import metrics

>>> @metrics.running_mean (step_size=2) # Update every 2 steps
@metrics.lambda_metric('my_metric')
def metric(y_pred, y_true):
return y_pred + y_true

>>> metric.reset ({})
>>> metric.process ({'y_pred':torch.Tensor([2]), 'y_true':torch.Tensor([2])}) # 4

{'running_my_metric': 4.0}
>>> metric.process ({'y_pred':torch.Tensor ([3]), 'y_true':torch.Tensor([3])}) # 6
{'running_my_metric': 4.0}

>>> metric.process ({'y_pred':torch.Tensor ([4]), 'y_true':torch.Tensor ([4]1)}) # &,
—triggers update
{'running_my_metric': 6.0}

Parameters
* clazz - The class to decorate
* batch_size (int)—See RunningMean
* step_size (int)- See RunningMean

e dim (int, tuple)-See RunningMean
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Returns decorator or Met ricTree instance or wrapper

torchbearer.metrics.decorators.std (clazz=None, unbiased=True, dim=None)

The std () decorator is used to add a Std to the Met ricTree which will will output a sample standard
deviation value at the end of each epoch. At build time, if the inner class is not a MetricTree, one will be
created. The St d will also be wrapped in a ToDict (with ‘_std’ appended) for simplicity.

Example:

>>>
>>>

>>>

>>>
>>>
{}
>>>
{}

>>>

{}

>>>

import torch
from torchbearer import metrics

@metrics.std
@metrics.lambda_metric('my_metric')
def metric(y_pred, y_true):

return y_pred + y_true

metric.reset ({})
metric.process ({'y_pred':torch.Tensor([2]),

metric.process ({'y_pred':torch.Tensor ([3]),

metric.process ({'y_pred':torch.Tensor ([4]),

'y_true':torch.Tensor ([2])}) # 4
'y_true':torch.Tensor ([3])}) # 6

'y_true':torch.Tensor ([4])}) # 8

! ' % metric.process_final () ['my_metric_std']
'2.0000"

Parameters
e clazz — The class to decorate
e unbiased (bool)—See Std

e dim (int, tuple)-See Std

Returns A MetricTree with a Std appended or a wrapper class that extends MetricTree

torchbearer.metrics.decorators.to_dict (clazz)
The to_dict () decorator is used to wrap either a Metric class or a Metric instance with a ToDict
instance. The result is that future output will be wrapped in a dict[name, value].

Example:

>>>

>>>

>>>

>>>

>>>

from torchbearer import metrics

@metrics.lambda_metric('my_metric')
def my_metric(y_pred, y_true):
return y_pred + y_true

my_metric.process({'y_pred':4, 'y true':5})
@metrics.to_dict
@metrics.lambda_metric('my_metric')

def my_metric(y_pred, y_true):

return y_pred + y_true

my_metric.process({'y_pred':4, 'y_true':5})

{'my_metric': 9}
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Parameters clazz — The class to decorate
Returns A ToDict instance or a ToDict wrapper of the given class
torchbearer.metrics.decorators.var (clazz=None, unbiased=True, dim=None)
The var () decorator is used to add a Var to the Met ricTree which will will output a sample variance value

at the end of each epoch. At build time, if the inner class is not a Met ricTree, one will be created. The Var
will also be wrapped in a ToD1ict (with ‘_var’ appended) for simplicity.

Example:

>>> import torch
>>> from torchbearer import metrics

>>> @metrics.var
@metrics.lambda_metric('my_metric')
def metric(y_pred, y_true):
return y_pred + y_true

>>> metric.reset ({})

>>> metric.process ({'y_pred':torch.Tensor ([2]), 'v_true':torch.Tensor ([2])}) # 4
{}
>>> metric.process ({'y_pred':torch.Tensor([3]), 'y_true':torch.Tensor ([3])}) # 6
{}
>>> metric.process ({'y_pred':torch.Tensor([4]), 'y_true':torch.Tensor([4])}) # 8
{}
>>> ! ' % metric.process_final () ['my_metric_var']
'4.0000"

Parameters

e clazz - The class to decorate
* unbiased (bool)-See Var
e dim(int, tuple)-See Var

Returns A MetricTree with a Var appended or a wrapper class that extends MetricTree

8.3 Metric Wrappers

Metric wrappers are classes which wrap instances of Met ric or, in the case of EpochLambda and Bat chLambda,
functions. Typically, these should not be used directly (although this is entirely possible), but via the decorator
API.

class torchbearer.metrics.wrappers.BatchLambda (name, metric_function)
A metric which returns the output of the given function on each batch.

Parameters
* name (str)— The name of the metric.
* metric_function (func) - A metric function(‘y_pred’, ‘y_true’) to wrap.

process ( *args)
Return the output of the wrapped function.

Parameters args — The torchbearer. Trial state.

Returns The value of the metric function(‘y_pred’, ‘y_true’).
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class torchbearer.metrics.wrappers.EpochLambda (name, metric_function, running=True,

step_size=50)
A metric wrapper which computes the given function for concatenated values of ‘y_true’ and ‘y_pred’ each

epoch. Can be used as a running metric which computes the function for batches of outputs with a given step
size during training.

Parameters
* name (str)— The name of the metric.
* metric_function (func) - The function(‘y_pred’, ‘y_true’) to use as the metric.
* running (bool) — True if this should act as a running metric.
* step_size (int)— Step size to use between calls if running=True.

process_final_train (*args)
Evaluate the function with the aggregated outputs.

Returns The result of the function.

process_final_ validate (*args)
Evaluate the function with the aggregated outputs.

Returns The result of the function.

process_train (*args)
Concatenate the ‘y_true’ and ‘y_pred’ from the state along the 0 dimension, this must be the batch dimen-
sion. If this is a running metric, evaluates the function every number of steps.

Parameters args — The torchbearer. Trial state.
Returns The current running result.

process_validate ( *args)
During validation, just concatenate ‘y_true’ and y_pred’.

Parameters args — The torchbearer. Trial state.

reset (state)
Reset the ‘y_true’ and ‘y_pred’ caches.

Parameters state (dict)—-The torchbearer. Trial state.

class torchbearer.metrics.wrappers.ToDict (metric)
The ToDict class is an AdvancedMet ric which will put output from the inner Met ric in a dict (mapping
metric name to value) before returning. When in eval mode, ‘val_’ will be prepended to the metric name.

Example:

>>> from torchbearer import metrics
>>> @metrics.lambda_metric('my_metric')
def my_metric(y_pred, y_true):

return y_pred + y_true

>>> metric = metrics.ToDict (my_metric () .build())

>>> metric.process ({'y_pred': 4, 'y_true': 5})
{'my_metric': 9}

>>> metric.eval ()

>>> metric.process ({'y_pred': 4, 'y_true': 5})
{'val_my_metric': 9}

Parameters metric (Metric)—The Met ric instance to wrap.
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eval (data_key=None)
Put the metric in eval mode.

Parameters data_ key (StateKey) — The torchbearer data_key, if used

process_final_train (*args)
Process the given state and return the final metric value for a training iteration.

Returns The final metric value for a training iteration.

process_final validate (*args)
Process the given state and return the final metric value for a validation iteration.

Returns The final metric value for a validation iteration.

process_train (*args)
Process the given state and return the metric value for a training iteration.

Returns The metric value for a training iteration.

process_validate ( *args)
Process the given state and return the metric value for a validation iteration.

Returns The metric value for a validation iteration.

reset (state)
Reset the metric, called before the start of an epoch.

Parameters state (dict)— The current state dict of the Trial.

train ()
Put the metric in train mode.

8.4 Metric Aggregators

Aggregators are a special kind of Met ric which takes as input, the output from a previous metric or metrics. As a
result, via a Met ricTree, a series of aggregators can collect statistics such as Mean or Standard Deviation without
needing to compute the underlying metric multiple times. This can, however, make the aggregators complex to use. It
is therefore typically better to use the decorator APT.

class torchbearer.metrics.aggregators.Mean (name, dim=None)
Metric aggregator which calculates the mean of process outputs between calls to reset.

Parameters
* name (str)— The name of this metric.

* dim (int, tuple) - The dimension(s) on which to perform the mean. If left as None,
this will mean over the whole Tensor

process ( *args)
Add the input to the rolling sum. Input must be a torch tensor.

Parameters args — The output of some previous call to Metric.process ().

process_final (*args)
Compute and return the mean of all metric values since the last call to reset.

Returns The mean of the metric values since the last call to reset.

reset (state)
Reset the running count and total.
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Parameters state (dict)— The model state.

class torchbearer.metrics.aggregators.RunningMean (name, batch_size=50,

step_size=10, dim=None)
A RunningMet ric which outputs the running mean of its input tensors over the course of an epoch.

Parameters
* name (str)— The name of this running mean.
* batch_size (int) - The size of the deque to store of previous results.
* step_size (int) - The number of iterations between aggregations.

* dim (int, tuple)- The dimension(s) on which to perform the mean. If left as None,
this will mean over the whole Tensor

class torchbearer.metrics.aggregators.RunningMetric (name, batch_size=50,

step_size=10)
A metric which aggregates batches of results and presents a method to periodically process these into a value.

Note: Running metrics only provide output during training.

Parameters
* name (str)— The name of the metric.
* batch_size (int) — The size of the deque to store of previous results.
* step_size (int) - The number of iterations between aggregations.
process_train (*args)
Add the current metric value to the cache and call ‘_step’ is needed.
Parameters args — The output of some Metric
Returns The current metric value.

reset (state)
Reset the step counter. Does not clear the cache.

Parameters state (dict) - The current model state.

class torchbearer.metrics.aggregators.Std (name, unbiased=True, dim=None)
Metric aggregator which calculates the sample standard deviation of process outputs between calls to reset.
Optionally calculate the population std if unbiased = False.

Parameters
¢ name (str)— The name of this metric.

* unbiased (boo1l) — If True (default), calculates the sample standard deviation, else, the
population standard deviation

e dim(int, tuple)- The dimension(s)on which to compute the std. If left as None, this
will operate over the whole Tensor

process_final (*args)
Compute and return the final standard deviation.

Returns The standard deviation of each observation since the last reset call.
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class torchbearer.metrics.aggregators.Var (name, unbiased=True, dim=None)
Metric aggregator which calculates the sample variance of process outputs between calls to reset. Optionally
calculate the population variance if unbiased = False.

Parameters
¢ name (str)— The name of this metric.

* unbiased (bool) — If True (default), calculates the sample variance, else, the population
variance

e dim(int, tuple)- The dimension(s)on which to compute the std. If left as None, this
will operate over the whole Tensor

process ( *args)
Compute values required for the variance from the input. The input should be a torch Tensor. The sum and
sum of squares will be computed over the provided dimension.

Parameters args (torch.Tensor) — The output of some previous call to Metric.
process ().

process_final (*args)
Compute and return the final variance.

Returns The variance of each observation since the last reset call.

reset (state)
Reset the statistics to compute the next variance.

Parameters state (dict) - The model state.

8.5 Base Metrics

Base metrics are the base classes which represent the metrics supplied with torchbearer. They all use the
default_for_key () decorator so that they can be accessed in the call to torchbearer.Model via the fol-
lowing strings:

e ‘acc’ or ‘accuracy’: The DefaultAccuracy metric

* ‘binary_acc’ or ‘binary_accuracy’: The BinaryAccuracy metric

e ‘cat_acc’ or ‘cat_accuracy’: The CategoricalAccuracy metric

e ‘top_5_acc’ or ‘top_5_accuracy’: The TopKCategoricalAccuracy metric

e ‘top_10_acc’ or ‘top_10_accuracy’: The TopKCategoricalAccuracy metric with k=10
e ‘mse’: The MeanSquaredError metric

¢ ‘loss’: The Loss metric

e ‘epoch’: The Epoch metric

e ‘Ir’: The LR metric

e ‘roc_auc’ or ‘roc_auc_score’: The RocAucScore metric

class torchbearer.metrics.default.DefaultAccuracy
The default accuracy metric loads in a different accuracy metric depending on the loss function or criterion in
use at the start of training. Default for keys: acc, accuracy. The following bindings are in place for both nn and
functional variants:

e cross entropy loss -> CategoricalAccuracy [DEFAULT]
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e nllloss -> CategoricalAccuracy

e mse loss -> MeanSquaredError

* beceloss -> BinaryAccuracy

* bce loss with logits -> BinaryAccuracy

eval (data_key=None)
Put the metric in eval mode during model validation.

process (*args)
Process the state and update the metric for one iteration.

Parameters args — Arguments given to the metric. If this is a root level metric, will be given
state

Returns None, or the value of the metric for this batch

process_final (*args)
Process the terminal state and output the final value of the metric.

Parameters args — Arguments given to the metric. If this is a root level metric, will be given
state

Returns None or the value of the metric for this epoch

reset (state)
Reset the metric, called before the start of an epoch.

Parameters state (dict) - The current state dict of the Trial.

train ()
Put the metric in train mode during model training.

class torchbearer.metrics.primitives.BinaryAccuracy
Binary accuracy metric. Uses torch.eq to compare predictions to targets. Decorated with a mean and run-
ning_mean. Default for key: ‘binary_acc’.

Parameters
* pred_key (StateKey) — The key in state which holds the predicted values
* target_key (StateKey) — The key in state which holds the target values

* threshold (float) — value between 0 and 1 to use as a threshold when binarizing pre-
dictions and targets

class torchbearer.metrics.primitives.CategoricalAccuracy (ignore_index=-100)
Categorical accuracy metric. Uses torch.max to determine predictions and compares to targets. Decorated with
a mean, running_mean and std. Default for key: ‘cat_acc’

Parameters
* pred_key (StateKey) — The key in state which holds the predicted values
* target_key (StateKey) — The key in state which holds the target values

* ignore_index (int) - Specifies a target value that is ignored and does not contribute to
the metric output. See https://pytorch.org/docs/stable/nn.html#crossentropyloss

class torchbearer.metrics.primitives.TopKCategoricalAccuracy (k=5,
ignore_index=-

100)
Top K Categorical accuracy metric. Uses torch.topk to determine the top k predictions and compares to targets.

Decorated with a mean, running_mean and std. Default for keys: ‘top_5_acc’, ‘top_10_acc’.
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Parameters
* pred_key (StateKey) — The key in state which holds the predicted values
* target_key (StateKey) — The key in state which holds the target values

* ignore_index (int)— Specifies a target value that is ignored and does not contribute to
the metric output. See https://pytorch.org/docs/stable/nn.html#crossentropyloss

class torchbearer.metrics.primitives.MeanSquaredError
Mean squared error metric. Computes the pixelwise squared error which is then averaged with decorators.
Decorated with a mean and running_mean. Default for key: ‘mse’.

Parameters
* pred_key (StateKey) — The key in state which holds the predicted values
* target_key (StateKey) — The key in state which holds the target values

class torchbearer.metrics.primitives.Loss
Simply returns the ‘loss’ value from the model state. Decorated with a mean, running_mean and std. Default
for key: ‘loss’.

State Requirements:
* torchbearer.state.L0SS: This key should map to the loss for the current batch

class torchbearer.metrics.primitives.Epoch
Returns the ‘epoch’ from the model state. Default for key: ‘epoch’.

State Requirements:
* torchbearer.state.EPOCH: This key should map to the number of the current epoch

class torchbearer.metrics.roc_auc_score.RocAucScore (one_hot_labels=True,
one_hot_offset=0,

) one_hot_classes=10)
Area Under ROC curve metric. Default for keys: ‘roc_auc’, ‘roc_auc_score’.

Note: Requires sklearn.metrics.

Parameters

* one_hot_1labels (bool) - If True, convert the labels to a one hot encoding. Required
if they are not already.

* one_hot_offset (int)— Subtracted from class labels, use if not already zero based.

* one_hot_classes (int)— Number of classes for the one hot encoding.

8.6 Timer

class torchbearer.metrics.timer.TimerMetric (time_keys=())

get_timings ()

on_backward (state)
Perform some action with the given state as context after backward has been called on the loss.

Parameters state (dict)— The current state dict of the Trial.
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on_criterion (state)
Perform some action with the given state as context after the criterion has been evaluated.

Parameters state (dict) - The current state dict of the Trial.

on_criterion_validation (state)
Perform some action with the given state as context after the criterion evaluation has been completed with
the validation data.

Parameters state (dict)— The current state dict of the Trial.

on_end (state)
Perform some action with the given state as context at the end of the model fitting.

Parameters state (dict)— The current state dict of the Trial.

on_end_epoch (state)
Perform some action with the given state as context at the end of each epoch.

Parameters state (dict)— The current state dict of the Trial.

on_end_training (state)
Perform some action with the given state as context after the training loop has completed.

Parameters state (dict) - The current state dict of the Trial.

on_end validation (state)
Perform some action with the given state as context at the end of the validation loop.

Parameters state (dict)— The current state dict of the Trial.

on_forward (state)
Perform some action with the given state as context after the forward pass (model output) has been com-
pleted.

Parameters state (dict)— The current state dict of the Trial.

on_forward validation (state)
Perform some action with the given state as context after the forward pass (model output) has been com-
pleted with the validation data.

Parameters state (dict)— The current state dict of the Trial.

on_sample (state)
Perform some action with the given state as context after data has been sampled from the generator.

Parameters state (dict)— The current state dict of the Trial.

on_sample_validation (sfate)
Perform some action with the given state as context after data has been sampled from the validation gen-
erator.

Parameters state (dict)— The current state dict of the Trial.

on_start (state)
Perform some action with the given state as context at the start of a model fit.

Parameters state (dict) - The current state dict of the Trial.

on_start_epoch (state)
Perform some action with the given state as context at the start of each epoch.

Parameters state (dict)— The current state dict of the Trial.

on_start_training (state)
Perform some action with the given state as context at the start of the training loop.
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Parameters state (dict)— The current state dict of the Trial.

on_start_validation (state)
Perform some action with the given state as context at the start of the validation loop.

Parameters state (dict)— The current state dict of the Trial.

on_step_training (siate)
Perform some action with the given state as context after step has been called on the optimiser.

Parameters state (dict) - The current state dict of the Trial.

on_step_validation (sfate)
Perform some action with the given state as context at the end of each validation step.

Parameters state (dict)— The current state dict of the Trial.

process (*args)
Process the state and update the metric for one iteration.

Parameters args — Arguments given to the metric. If this is a root level metric, will be given
state

Returns None, or the value of the metric for this batch

reset (state)
Reset the metric, called before the start of an epoch.

Parameters state (dict)— The current state dict of the Trial.

update_time (fext, metric, state)
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