

Welcome to torchbearer’s documentation!

Notes

	Using the Metric API

	Serializing a Trial

	Using the Tensorboard Callback

	Logging to Visdom

Deep Learning

	Quickstart Guide

	Training a Variational Auto-Encoder

	Training a GAN

	Visualising CNNs: The Class Appearance Model

Differentiable Programming

	Optimising functions

	Linear Support Vector Machine (SVM)

	Breaking ADAM

Package Reference

	torchbearer

	torchbearer.callbacks

	torchbearer.metrics

	torchbearer.variational

Indices and tables

	Index

	Module Index

	Search Page

Using the Metric API

There are a few levels of complexity to the metric API. You’ve probably already seen keys such as ‘acc’ and ‘loss’ can
be used to reference pre-built metrics, so we’ll have a look at how these get mapped ‘under the hood’. We’ll also take a
look at how the metric decorator API can be used to construct powerful metrics which report running
and terminal statistics. Finally, we’ll take a closer look at the MetricTree and MetricList which
make all of this happen internally.

Default Keys

In typical usage of torchbearer, we rarely interface directly with the metric API, instead just providing keys to the
Model such as ‘acc’ and ‘loss’. These keys are managed in a dict maintained by the decorator
default_for_key(key). Inside the torchbearer model, metrics are stored in an instance of
MetricList, which is a wrapper that calls each metric in turn, collecting the results in a dict. If
MetricList is given a string, it will look up the metric in the default metrics dict and use that instead. If
you have defined a class that implements Metric and simply want to refer to it with a key, decorate it with
default_for_key().

Metric Decorators

Now that we have explained some of the basic aspects of the metric API, lets have a look at an example:

@default_for_key('binary_accuracy')
@default_for_key('binary_acc')
@running_mean
@mean
class BinaryAccuracy(Metric):

This is the definition of the default accuracy metric in torchbearer, let’s break it down.

mean(), std() and running_mean() are all decorators which collect statistics about the underlying
metric. CategoricalAccuracy simply returns a boolean tensor with an entry for each item in a batch. The
mean() and std() decorators will take a mean / standard deviation value over the whole epoch (by keeping
a sum and a number of values). The running_mean() will collect a rolling mean for a given window size. That is,
the running mean is only computed over the last 50 batches by default (however, this can be changed to suit your needs).
Running metrics also have a step size, designed to reduce the need for constant computation when not a lot is changing.
The default value of 10 means that the running mean is only updated every 10 batches.

Finally, the default_for_key() decorator is used to bind the metric to the keys ‘acc’ and ‘accuracy’.

Lambda Metrics

One decorator we haven’t covered is the lambda_metric(). This decorator allows you to decorate a function instead
of a class. Here’s another possible definition of the accuracy metric which uses a function:

@metrics.default_for_key('acc')
@metrics.running_mean
@metrics.std
@metrics.mean
@metrics.lambda_metric('acc', on_epoch=False)
def categorical_accuracy(y_pred, y_true):
 _, y_pred = torch.max(y_pred, 1)
 return (y_pred == y_true).float()

The lambda_metric() here converts the function into a MetricFactory. This can then be used in the
normal way. By default and in our example, the lambda metric will execute the function with each batch of output
(y_pred, y_true). If we set on_epoch=True, the decorator will use an EpochLambda instead of a
BatchLambda. The EpochLambda collects the data over a whole epoch and then executes the metric at
the end.

Metric Output - to_dict

At the root level, torchbearer expects metrics to output a dictionary which maps the metric name to the value. Clearly,
this is not done in our accuracy function above as the aggregators expect input as numbers / tensors instead of
dictionaries. We could change this and just have everything return a dictionary but then we would be unable to tell the
difference between metrics we wish to display / log and intermediate stages (like the tensor output in our example
above). Instead then, we have the to_dict() decorator. This decorator is used to wrap the output of a metric in a
dictionary so that it will be picked up by the loggers. The aggregators all do this internally (with ‘running_’,
‘_std’, etc. added to the name) so there’s no need there, however, in case you have a metric that outputs precisely the
correct value, the to_dict() decorator can make things a little easier.

Data Flow - The Metric Tree

Ok, so we’ve covered the decorator API and have seen how to implement all but the most
complex metrics in torchbearer. Each of the decorators described above can be easily associated with one of the metric
aggregator or wrapper classes so we won’t go into that any further. Instead we’ll just briefly explain the
MetricTree. The MetricTree is a very simple tree implementation which has a root and some children.
Each child could be another tree and so this supports trees of arbitrary depth. The main motivation of the metric tree
is to co-ordinate data flow from some root metric (like our accuracy above) to a series of leaves (mean, std, etc.).
When Metric.process() is called on a MetricTree, the output of the call from the root is given to each
of the children in turn. The results from the children are then collected in a dictionary. The main reason for including
this was to enable encapsulation of the different statistics without each one needing to compute the underlying metric
individually. In theory the MetricTree means that vastly complex metrics could be computed for specific use
cases, although I can’t think of any right now…

Serializing a Trial

This guide will explain the two different ways to how to save and reload your results from a Trial.

Setting up a Mock Example

Let’s assume we have a basic binary classification task where we have 100-dimensional samples as input and a binary label as output.
Let’s also assume that we would like to solve this problem with a 2-layer neural network.
Finally, we also want to keep track of the sum of hidden outputs for some arbitrary reason. Therefore we use the state functionality of Torchbearer.

We create a state key for the mock sum we wanted to track using state.

MOCK = torchbearer.state_key('mock')

Here is our basic 2-layer neural network.

class BasicModel(nn.Module):
 def __init__(self):
 super(BasicModel, self).__init__()
 self.linear1 = nn.Linear(100, 25)
 self.linear2 = nn.Linear(25, 1)

 def forward(self, x, state):
 x = self.linear1(x)
 # The following step is here to showcase a useless but simple of example a forward method that uses state
 state[MOCK] = torch.sum(x)
 x = self.linear2(x)
 return torch.sigmoid(x)

We create some random training dataset and put them in a DataLoader.

n_sample = 100
X = torch.rand(n_sample, 100)
y = torch.randint(0, 2, [n_sample, 1]).float()
traingen = DataLoader(TensorDataset(X, y))

Let’s say we would like to save the model every time we get a better training loss. Torchbearer’s Best checkpoint callback is perfect for this job.
We then run the model for 3 epochs.

model = BasicModel()
Create a checkpointer that track val_loss and saves a model.pt whenever we get a better loss
checkpointer = torchbearer.callbacks.checkpointers.Best(filepath='model.pt', monitor='loss')
optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001)
torchbearer_trial = Trial(model, optimizer=optimizer, criterion=F.binary_cross_entropy, metrics=['loss'],
 callbacks=[checkpointer])
torchbearer_trial.with_train_generator(traingen)
torchbearer_trial.run(epochs=3)

Reloading the Trial for More Epochs

Given we recreate the exact same Trial structure, we can easily resume our run from the last checkpoint. The following code block shows how it’s done.
Remember here that the epochs parameter we pass to Trial acts cumulative. In other words, the following run will complement the entire training to
a total of 6 epochs.

state_dict = torch.load('model.pt')
model = BasicModel()
trial_reloaded = Trial(model, optimizer=optimizer, criterion=F.binary_cross_entropy, metrics=['loss'],
 callbacks=[checkpointer])
trial_reloaded.load_state_dict(state_dict)
trial_reloaded.with_train_generator(traingen)
trial_reloaded.run(epochs=6)

Trying to Reload to a PyTorch Module

We try to load the state_dict to a regular PyTorch Module, as described in PyTorch’s own documentation here [https://pytorch.org/docs/stable/notes/serialization.html]:

model = BasicModel()
try:
 model.load_state_dict(state_dict)
except AttributeError as e:
 print("\n")
 print(e)

We will get the following error:

'StateKey' object has no attribute 'startswith'

The reason is that the state_dict has Trial related attributes that are unknown to a native PyTorch model. This is why we have the save_model_params_only
option for our checkpointers. We try again with that option

model = BasicModel()
checkpointer = torchbearer.callbacks.checkpointers.Best(filepath='model.pt', monitor='loss', save_model_params_only=True)
optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001)
torchbearer_trial = Trial(model, optimizer=optimizer, criterion=F.binary_cross_entropy, metrics=['loss'],
 callbacks=[checkpointer])
torchbearer_trial.with_train_generator(traingen)
torchbearer_trial.run(epochs=3)

Try once again to load the module, forward another random sample for testing
state_dict = torch.load('model.pt')
model = BasicModel()
model.load_state_dict(state_dict)

No errors this time, but we still have to test. Here is a test sample and we run it through the model.

X_test = torch.rand(5, 100)
try:
 model(X_test)
except TypeError as e:
 print("\n")
 print(e)

forward() missing 1 required positional argument: 'state'

Now we get a different error, stating that we should also be passing state as an argument to module’s forward. This should not be a surprise
as we defined state parameter in the forward method of BasicModule as a required argument.

Robust Signature for Module

We define the model with a better signature this time, so it gracefully handles the problem above.

class BetterSignatureModel(nn.Module):
 def __init__(self):
 super(BetterSignatureModel, self).__init__()
 self.linear1 = nn.Linear(100, 25)
 self.linear2 = nn.Linear(25, 1)

 def forward(self, x, **state):
 x = self.linear1(x)
 # Using kwargs instead of state is safer from a serialization perspective
 if state is not None:
 state = state
 state[MOCK] = torch.sum(x)
 x = self.linear2(x)
 return torch.sigmoid(x)

Finally, we wrap it up once again to test the new definition of the model.

model = BetterSignatureModel()
checkpointer = torchbearer.callbacks.checkpointers.Best(filepath='model.pt', monitor='loss', save_model_params_only=True)
optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001)
torchbearer_trial = Trial(model, optimizer=optimizer, criterion=F.binary_cross_entropy, metrics=['loss'],
 callbacks=[checkpointer])
torchbearer_trial.with_train_generator(traingen)
torchbearer_trial.run(epochs=3)

This time, the forward function should work without the need for a state argument
state_dict = torch.load('model.pt')
model = BetterSignatureModel()
model.load_state_dict(state_dict)
X_test = torch.rand(5, 100)
model(X_test)

Source Code

The source code for the example are given below:

Download Python source code: serialization.py

Using the Tensorboard Callback

In this note we will cover the use of the TensorBoard callback. This is one of three callbacks
in torchbearer which use the TensorboardX [https://github.com/lanpa/tensorboardX] library. The PyPi version of
tensorboardX (1.4) is somewhat outdated at the time of writing so it may be worth installing from source if some of the
examples don’t run correctly:

pip install git+https://github.com/lanpa/tensorboardX

The TensorBoard callback is simply used to log metric values (and optionally a model graph) to
tensorboard. Let’s have a look at some examples.

Setup

We’ll begin with the data and simple model from our quickstart example.

BATCH_SIZE = 128

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225])

dataset = torchvision.datasets.CIFAR10(root='./data/cifar', train=True, download=True,
 transform=transforms.Compose([transforms.ToTensor(), normalize]))
splitter = DatasetValidationSplitter(len(dataset), 0.1)
trainset = splitter.get_train_dataset(dataset)
valset = splitter.get_val_dataset(dataset)

traingen = torch.utils.data.DataLoader(trainset, pin_memory=True, batch_size=BATCH_SIZE, shuffle=True, num_workers=10)
valgen = torch.utils.data.DataLoader(valset, pin_memory=True, batch_size=BATCH_SIZE, shuffle=True, num_workers=10)

testset = torchvision.datasets.CIFAR10(root='./data/cifar', train=False, download=True,
 transform=transforms.Compose([transforms.ToTensor(), normalize]))
testgen = torch.utils.data.DataLoader(testset, pin_memory=True, batch_size=BATCH_SIZE, shuffle=False, num_workers=10)

class SimpleModel(nn.Module):
 def __init__(self):
 super(SimpleModel, self).__init__()
 self.convs = nn.Sequential(
 nn.Conv2d(3, 16, stride=2, kernel_size=3),
 nn.BatchNorm2d(16),
 nn.ReLU(),
 nn.Conv2d(16, 32, stride=2, kernel_size=3),
 nn.BatchNorm2d(32),
 nn.ReLU(),
 nn.Conv2d(32, 64, stride=2, kernel_size=3),
 nn.BatchNorm2d(64),
 nn.ReLU()
)

 self.classifier = nn.Linear(576, 10)

 def forward(self, x):
 x = self.convs(x)
 x = x.view(-1, 576)
 return self.classifier(x)

model = SimpleModel()

optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001)
loss = nn.CrossEntropyLoss()

The callback has three capabilities that we will demonstrate in this guide:

	It can log a graph of the model

	It can log the batch metrics

	It can log the epoch metrics

Logging the Model Graph

One of the advantages of PyTorch is that it doesn’t construct a model graph internally like other frameworks such as
TensorFlow. This means that determining the model structure requires a forward pass through the model with some dummy
data and parsing the subsequent graph built by autograd. Thankfully,
TensorboardX [https://github.com/lanpa/tensorboardX] can do this for us. The
TensorBoard callback makes things a little easier by creating the dummy data for us and handling
the interaction with TensorboardX [https://github.com/lanpa/tensorboardX]. The size of the dummy data is chosen to
match the size of the data in the dataset / data loader, this means that we need at least one batch of training data for
the graph to be written. Let’s train for one epoch just to see a model graph:

from torchbearer import Trial
from torchbearer.callbacks import TensorBoard

torchbearer_trial = Trial(model, optimizer, loss, metrics=['acc', 'loss'], callbacks=[TensorBoard(write_graph=True, write_batch_metrics=False, write_epoch_metrics=False)]).to('cuda')
torchbearer_trial.with_generators(train_generator=traingen, val_generator=valgen)
torchbearer_trial.run(epochs=1)

To see the result, navigate to the project directory and execute the command tensorboard --logdir logs, then
open a web browser and navigate to localhost:6006 [http://localhost:6006]. After a bit of clicking around you should
be able to see and download something like the following:

[image: Simple model graph in tensorboard]

The dynamic graph construction does introduce some weirdness, however, this is about as good as model graphs typically
get.

Logging Batch Metrics

If we have some metrics that output every batch, we might want to log them to tensorboard. This is useful particularly
if epochs are long and we want to watch them progress. For this we can set write_batch_metrics=True in the
TensorBoard callback constructor. Setting this flag will cause the batch metrics to be written
as graphs to tensorboard. We are also able to change the frequency of updates by choosing the batch_step_size.
This is the number of batches to wait between updates and can help with reducing the size of the logs, 10 seems
reasonable. We run this for 10 epochs with the following:

torchbearer_trial = Trial(model, optimizer, loss, metrics=['acc', 'loss'], callbacks=[TensorBoard(write_graph=False, write_batch_metrics=True, batch_step_size=10, write_epoch_metrics=False)]).to('cuda')
torchbearer_trial.with_generators(train_generator=traingen, val_generator=valgen)
torchbearer_trial.run(epochs=10)

Runnng tensorboard again with tensorboard --logdir logs, navigating to
localhost:6006 [http://localhost:6006] and selecting ‘WALL’ for the horizontal axis we can see the following:

[image: Batch metric graphs in tensorboard]

Logging Epoch Metrics

Logging epoch metrics is perhaps the most typical use case of TensorBoard and the
TensorBoard callback. Using the same model as before, but setting
write_epoch_metrics=True we can log epoch metrics with the following:

torchbearer_trial = Trial(model, optimizer, loss, metrics=['acc', 'loss'], callbacks=[TensorBoard(write_graph=False, write_batch_metrics=False, write_epoch_metrics=True)]).to('cuda')
torchbearer_trial.with_generators(train_generator=traingen, val_generator=valgen)
torchbearer_trial.run(epochs=10)

Again, runnng tensorboard with tensorboard --logdir logs and navigating to
localhost:6006 [http://localhost:6006] we see the following:

[image: Epoch metric graphs in tensorboard]

Note that we also get the batch metrics here. In fact this is the terminal value of the batch metric, which means that
by default it is an average over the last 50 batches. This can be useful when looking at over-fitting as it gives a more
accurate depiction of the model performance on the training data (the other training metrics are an average over the
whole epoch despite model performance changing throughout).

Source Code

The source code for these examples is given below:

Download Python source code: tensorboard.py

Logging to Visdom

In this note we will cover the use of the TensorBoard callback to log to visdom.
See the tensorboard note for more on the callback in general.

Model Setup

We’ll use the same setup as the tensorboard note.

BATCH_SIZE = 128

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225])

dataset = torchvision.datasets.CIFAR10(root='./data/cifar', train=True, download=True,
 transform=transforms.Compose([transforms.ToTensor(), normalize]))
splitter = DatasetValidationSplitter(len(dataset), 0.1)
trainset = splitter.get_train_dataset(dataset)
valset = splitter.get_val_dataset(dataset)

traingen = torch.utils.data.DataLoader(trainset, pin_memory=True, batch_size=BATCH_SIZE, shuffle=True, num_workers=10)
valgen = torch.utils.data.DataLoader(valset, pin_memory=True, batch_size=BATCH_SIZE, shuffle=True, num_workers=10)

testset = torchvision.datasets.CIFAR10(root='./data/cifar', train=False, download=True,
 transform=transforms.Compose([transforms.ToTensor(), normalize]))
testgen = torch.utils.data.DataLoader(testset, pin_memory=True, batch_size=BATCH_SIZE, shuffle=False, num_workers=10)

class SimpleModel(nn.Module):
 def __init__(self):
 super(SimpleModel, self).__init__()
 self.convs = nn.Sequential(
 nn.Conv2d(3, 16, stride=2, kernel_size=3),
 nn.BatchNorm2d(16),
 nn.ReLU(),
 nn.Conv2d(16, 32, stride=2, kernel_size=3),
 nn.BatchNorm2d(32),
 nn.ReLU(),
 nn.Conv2d(32, 64, stride=2, kernel_size=3),
 nn.BatchNorm2d(64),
 nn.ReLU()
)

 self.classifier = nn.Linear(576, 10)

 def forward(self, x):
 x = self.convs(x)
 x = x.view(-1, 576)
 return self.classifier(x)

model = SimpleModel()

optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001)
loss = nn.CrossEntropyLoss()

Logging Epoch and Batch Metrics

Visdom does not support logging model graphs so we shall start with logging epoch and batch metrics.
The only change we need to make to the tensorboard example is setting visdom=True in the TensorBoard callback constructor.

torchbearer_trial = Trial(model, optimizer, loss, metrics=['acc', 'loss'], callbacks=[TensorBoard(visdom=True, write_graph=True, write_batch_metrics=True, batch_step_size=10, write_epoch_metrics=True)]).to('cuda')
torchbearer_trial.with_generators(train_generator=traingen, val_generator=valgen)
torchbearer_trial.run(epochs=5)

If your visdom server is running then you should see something similar to the figure below:

[image: Visdom logging batch and epoch statistics]

Visdom Client Parameters

The visdom client defaults to logging to localhost:8097 in the main environment however this is rather restrictive.
We would like to be able to log to any server on any port and in any environment.
To do this we need to edit the VisdomParams class.

class VisdomParams:
 """ ... """
 SERVER = 'http://localhost'
 ENDPOINT = 'events'
 PORT = 8097
 IPV6 = True
 HTTP_PROXY_HOST = None
 HTTP_PROXY_PORT = None
 ENV = 'main'
 SEND = True
 RAISE_EXCEPTIONS = None
 USE_INCOMING_SOCKET = True
 LOG_TO_FILENAME = None

We first import the tensorboard file.

import torchbearer.callbacks.tensor_board as tensorboard

We can then edit the visdom client parameters, for example, changing the environment to “Test”.

tensorboard.VisdomParams.ENV = 'Test'

Running another fit call, we can see we are now logging to the “Test” environment.

[image: Visdom logging to new environment]

The only paramenter that the TensorBoard callback sets explicity (and cannot be overrided) is the LOG_TO_FILENAME parameter.
This is set to the log_dir given on the callback init.

Source Code

The source code for this example is given below:

Download Python source code: visdom.py

Quickstart Guide

This guide will give a quick intro to training PyTorch models with torchbearer. We’ll start by loading in some data and defining a model, then we’ll train it for a few epochs and see how well it does.

Defining the Model

Let’s get using torchbearer. Here’s some data from Cifar10 and a simple 3 layer strided CNN:

BATCH_SIZE = 128

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225])

dataset = torchvision.datasets.CIFAR10(root='./data/cifar', train=True, download=True,
 transform=transforms.Compose([transforms.ToTensor(), normalize]))
splitter = DatasetValidationSplitter(len(dataset), 0.1)
trainset = splitter.get_train_dataset(dataset)
valset = splitter.get_val_dataset(dataset)

traingen = torch.utils.data.DataLoader(trainset, pin_memory=True, batch_size=BATCH_SIZE, shuffle=True, num_workers=10)
valgen = torch.utils.data.DataLoader(valset, pin_memory=True, batch_size=BATCH_SIZE, shuffle=True, num_workers=10)

testset = torchvision.datasets.CIFAR10(root='./data/cifar', train=False, download=True,
 transform=transforms.Compose([transforms.ToTensor(), normalize]))
testgen = torch.utils.data.DataLoader(testset, pin_memory=True, batch_size=BATCH_SIZE, shuffle=False, num_workers=10)

class SimpleModel(nn.Module):
 def __init__(self):
 super(SimpleModel, self).__init__()
 self.convs = nn.Sequential(
 nn.Conv2d(3, 16, stride=2, kernel_size=3),
 nn.BatchNorm2d(16),
 nn.ReLU(),
 nn.Conv2d(16, 32, stride=2, kernel_size=3),
 nn.BatchNorm2d(32),
 nn.ReLU(),
 nn.Conv2d(32, 64, stride=2, kernel_size=3),
 nn.BatchNorm2d(64),
 nn.ReLU()
)

 self.classifier = nn.Linear(576, 10)

 def forward(self, x):
 x = self.convs(x)
 x = x.view(-1, 576)
 return self.classifier(x)

model = SimpleModel()

Note that we use torchbearers DatasetValidationSplitter here to create a validation set (10% of the data).
This is essential to avoid over-fitting to your test data [http://blog.kaggle.com/2012/07/06/the-dangers-of-overfitting-psychopathy-post-mortem/].

Training on Cifar10

Typically we would need a training loop and a series of calls to backward, step etc.
Instead, with torchbearer, we can define our optimiser and some metrics (just ‘acc’ and ‘loss’ for now) and let it do the work.

optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001)
loss = nn.CrossEntropyLoss()

import torchbearer
from torchbearer import Trial
from torchbearer.callbacks import TensorBoard

torchbearer_trial = Trial(model, optimizer, loss, metrics=['acc', 'loss'], callbacks=[TensorBoard(write_batch_metrics=True)]).to('cuda')
torchbearer_trial.with_generators(train_generator=traingen, val_generator=valgen, test_generator=testgen)
torchbearer_trial.run(epochs=10)
torchbearer_trial.evaluate(data_key=torchbearer.TEST_DATA)

Running the above produces the following output:

Files already downloaded and verified
Files already downloaded and verified
0/10(t): 100%|██████████| 352/352 [00:02<00:00, 163.98it/s, acc=0.4339, loss=1.5776, running_acc=0.5202, running_loss=1.3494]
0/10(v): 100%|██████████| 40/40 [00:00<00:00, 365.42it/s, val_acc=0.5266, val_loss=1.3208]
1/10(t): 100%|██████████| 352/352 [00:02<00:00, 171.36it/s, acc=0.5636, loss=1.2176, running_acc=0.5922, running_loss=1.1418]
1/10(v): 100%|██████████| 40/40 [00:00<00:00, 292.15it/s, val_acc=0.5888, val_loss=1.1657]
2/10(t): 100%|██████████| 352/352 [00:02<00:00, 124.04it/s, acc=0.6226, loss=1.0671, running_acc=0.6222, running_loss=1.0566]
2/10(v): 100%|██████████| 40/40 [00:00<00:00, 359.21it/s, val_acc=0.626, val_loss=1.0555]
3/10(t): 100%|██████████| 352/352 [00:02<00:00, 151.69it/s, acc=0.6587, loss=0.972, running_acc=0.6634, running_loss=0.9589]
3/10(v): 100%|██████████| 40/40 [00:00<00:00, 222.62it/s, val_acc=0.6414, val_loss=1.0064]
4/10(t): 100%|██████████| 352/352 [00:02<00:00, 131.49it/s, acc=0.6829, loss=0.9061, running_acc=0.6764, running_loss=0.918]
4/10(v): 100%|██████████| 40/40 [00:00<00:00, 346.88it/s, val_acc=0.6636, val_loss=0.9449]
5/10(t): 100%|██████████| 352/352 [00:02<00:00, 164.28it/s, acc=0.6988, loss=0.8563, running_acc=0.6919, running_loss=0.858]
5/10(v): 100%|██████████| 40/40 [00:00<00:00, 244.97it/s, val_acc=0.663, val_loss=0.9404]
6/10(t): 100%|██████████| 352/352 [00:02<00:00, 149.52it/s, acc=0.7169, loss=0.8131, running_acc=0.7095, running_loss=0.8421]
6/10(v): 100%|██████████| 40/40 [00:00<00:00, 329.26it/s, val_acc=0.6704, val_loss=0.9209]
7/10(t): 100%|██████████| 352/352 [00:02<00:00, 160.60it/s, acc=0.7302, loss=0.7756, running_acc=0.738, running_loss=0.767]
7/10(v): 100%|██████████| 40/40 [00:00<00:00, 349.86it/s, val_acc=0.6716, val_loss=0.9313]
8/10(t): 100%|██████████| 352/352 [00:02<00:00, 155.08it/s, acc=0.7412, loss=0.7444, running_acc=0.7347, running_loss=0.7547]
8/10(v): 100%|██████████| 40/40 [00:00<00:00, 350.05it/s, val_acc=0.673, val_loss=0.9324]
9/10(t): 100%|██████████| 352/352 [00:02<00:00, 165.28it/s, acc=0.7515, loss=0.715, running_acc=0.7352, running_loss=0.7492]
9/10(v): 100%|██████████| 40/40 [00:00<00:00, 310.76it/s, val_acc=0.6792, val_loss=0.9743]
0/1(e): 100%|██████████| 79/79 [00:00<00:00, 233.06it/s, test_acc=0.6673, test_loss=0.9741]

Source Code

The source code for the example is given below:

Download Python source code: quickstart.py

Training a Variational Auto-Encoder

This guide will give a quick guide on training a variational auto-encoder (VAE) in torchbearer. We will use the VAE example from the pytorch examples here [https://github.com/pytorch/examples/tree/master/vae]:

Defining the Model

We shall first copy the VAE example model.

class VAE(nn.Module):
 def __init__(self):
 super(VAE, self).__init__()

 self.fc1 = nn.Linear(784, 400)
 self.fc21 = nn.Linear(400, 20)
 self.fc22 = nn.Linear(400, 20)
 self.fc3 = nn.Linear(20, 400)
 self.fc4 = nn.Linear(400, 784)

 def encode(self, x):
 h1 = F.relu(self.fc1(x))
 return self.fc21(h1), self.fc22(h1)

 def reparameterize(self, mu, logvar):
 if self.training:
 std = torch.exp(0.5*logvar)
 eps = torch.randn_like(std)
 return eps.mul(std).add_(mu)
 else:
 return mu

 def decode(self, z):
 h3 = F.relu(self.fc3(z))
 return torch.sigmoid(self.fc4(h3))

 def forward(self, x):
 mu, logvar = self.encode(x.view(-1, 784))
 z = self.reparameterize(mu, logvar)
 return self.decode(z), mu, logvar

Defining the Data

We get the MNIST dataset from torchvision, split it into a train and validation set and transform them to torch tensors.

BATCH_SIZE = 128

transform = transforms.Compose([transforms.ToTensor()])

Define standard classification mnist dataset with random validation set

dataset = torchvision.datasets.MNIST('./data/mnist', train=True, download=True, transform=transform)
splitter = DatasetValidationSplitter(len(dataset), 0.1)
basetrainset = splitter.get_train_dataset(dataset)
basevalset = splitter.get_val_dataset(dataset)

The output label from this dataset is the classification label, since we are doing a auto-encoding problem, we wish the label to be the original image. To fix this we create a wrapper class which replaces the classification label with the image.

class AutoEncoderMNIST(Dataset):
 def __init__(self, mnist_dataset):
 super().__init__()
 self.mnist_dataset = mnist_dataset

 def __getitem__(self, index):
 character, label = self.mnist_dataset.__getitem__(index)
 return character, character

 def __len__(self):
 return len(self.mnist_dataset)

We then wrap the original datasets and create training and testing data generators in the standard pytorch way.

trainset = AutoEncoderMNIST(basetrainset)

valset = AutoEncoderMNIST(basevalset)

traingen = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True, num_workers=8)

valgen = torch.utils.data.DataLoader(valset, batch_size=BATCH_SIZE, shuffle=True, num_workers=8)

Defining the Loss

Now we have the model and data, we will need a loss function to optimize.
VAEs typically take the sum of a reconstruction loss and a KL-divergence loss to form the final loss value.

def binary_cross_entropy(y_pred, y_true):
 BCE = F.binary_cross_entropy(y_pred, y_true, reduction='sum')
 return BCE

def kld(mu, logvar):
 KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
 return KLD

There are two ways this can be done in torchbearer - one is very similar to the PyTorch example method and the other utilises the torchbearer state.

PyTorch method

The loss function slightly modified from the PyTorch example is:

def loss_function(y_pred, y_true):
 recon_x, mu, logvar = y_pred
 x = y_true

 BCE = bce_loss(recon_x, x)

 KLD = kld_Loss(mu, logvar)

 return BCE + KLD

This requires the packing of the reconstruction, mean and log-variance into the model output and unpacking it for the loss function to use.

 def forward(self, x):
 mu, logvar = self.encode(x.view(-1, 784))
 z = self.reparameterize(mu, logvar)
 return self.decode(z), mu, logvar

Using Torchbearer State

Instead of having to pack and unpack the mean and variance in the forward pass, in torchbearer there is a persistent state dictionary which can be used to conveniently hold such intermediate tensors.
We can (and should) generate unique state keys for interacting with state:

State keys
MU, LOGVAR = torchbearer.state_key('mu'), torchbearer.state_key('logvar')

By default the model forward pass does not have access to the state dictionary, but torchbearer will infer the state argument from the model forward.

from torchbearer import Trial

torchbearer_trial = Trial(model, optimizer, loss, metrics=['acc', 'loss'],
 callbacks=[add_kld_loss_callback, save_reconstruction_callback()]).to('cuda')

We can then modify the model forward pass to store the mean and log-variance under suitable keys.

 def forward(self, x, state):
 mu, logvar = self.encode(x.view(-1, 784))
 z = self.reparameterize(mu, logvar)
 state[MU] = mu
 state[LOGVAR] = logvar
 return self.decode(z)

The reconstruction loss is a standard loss taking network output and the true label

loss = binary_cross_entropy

Since loss functions cannot access state, we utilise a simple callback to combine the kld loss which does not act on network output or true label.

@torchbearer.callbacks.add_to_loss
def add_kld_loss_callback(state):
 KLD = kld(state[MU], state[LOGVAR])
 return KLD

Visualising Results

For auto-encoding problems it is often useful to visualise the reconstructions. We can do this in torchbearer by using another simple callback. We stack the first 8 images from the first validation batch and pass them to torchvisions [https://github.com/pytorch/vision] save_image [https://pytorch.org/docs/stable/torchvision/utils.html?highlight=save#torchvision.utils.save_image] function which saves out visualisations.

def save_reconstruction_callback(num_images=8, folder='results/'):
 import os
 os.makedirs(os.path.dirname(folder), exist_ok=True)

 @torchbearer.callbacks.on_step_validation
 def saver(state):
 if state[torchbearer.BATCH] == 0:
 data = state[torchbearer.X]
 recon_batch = state[torchbearer.Y_PRED]
 comparison = torch.cat([data[:num_images],
 recon_batch.view(128, 1, 28, 28)[:num_images]])
 save_image(comparison.cpu(),
 str(folder) + 'reconstruction_' + str(state[torchbearer.EPOCH]) + '.png', nrow=num_images)
 return saver

Training the Model

We train the model by creating a torchmodel and a torchbearertrialand calling run [https://torchbearer.readthedocs.io/en/latest/code/main.html#torchbearer.trial.Trial.run]. As our loss is named binary_cross_entropy, we can use the ‘acc’ metric to get a binary accuracy.

model = VAE()
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001)
loss = binary_cross_entropy

from torchbearer import Trial

torchbearer_trial = Trial(model, optimizer, loss, metrics=['acc', 'loss'],
 callbacks=[add_kld_loss_callback, save_reconstruction_callback()]).to('cuda')
torchbearer_trial.with_generators(train_generator=traingen, val_generator=valgen)
torchbearer_trial.run(epochs=10)

This gives the following output:

0/10(t): 100%|██████████| 422/422 [00:01<00:00, 219.71it/s, binary_acc=0.9139, loss=2.139e+4, running_binary_acc=0.9416, running_loss=1.685e+4]
0/10(v): 100%|██████████| 47/47 [00:00<00:00, 269.77it/s, val_binary_acc=0.9505, val_loss=1.558e+4]
1/10(t): 100%|██████████| 422/422 [00:01<00:00, 219.80it/s, binary_acc=0.9492, loss=1.573e+4, running_binary_acc=0.9531, running_loss=1.52e+4]
1/10(v): 100%|██████████| 47/47 [00:00<00:00, 300.54it/s, val_binary_acc=0.9614, val_loss=1.399e+4]
2/10(t): 100%|██████████| 422/422 [00:01<00:00, 232.41it/s, binary_acc=0.9558, loss=1.476e+4, running_binary_acc=0.9571, running_loss=1.457e+4]
2/10(v): 100%|██████████| 47/47 [00:00<00:00, 296.49it/s, val_binary_acc=0.9652, val_loss=1.336e+4]
3/10(t): 100%|██████████| 422/422 [00:01<00:00, 213.10it/s, binary_acc=0.9585, loss=1.437e+4, running_binary_acc=0.9595, running_loss=1.423e+4]
3/10(v): 100%|██████████| 47/47 [00:00<00:00, 313.42it/s, val_binary_acc=0.9672, val_loss=1.304e+4]
4/10(t): 100%|██████████| 422/422 [00:01<00:00, 213.43it/s, binary_acc=0.9601, loss=1.413e+4, running_binary_acc=0.9605, running_loss=1.409e+4]
4/10(v): 100%|██████████| 47/47 [00:00<00:00, 242.23it/s, val_binary_acc=0.9683, val_loss=1.282e+4]
5/10(t): 100%|██████████| 422/422 [00:01<00:00, 220.94it/s, binary_acc=0.9611, loss=1.398e+4, running_binary_acc=0.9614, running_loss=1.397e+4]
5/10(v): 100%|██████████| 47/47 [00:00<00:00, 316.69it/s, val_binary_acc=0.9689, val_loss=1.281e+4]
6/10(t): 100%|██████████| 422/422 [00:01<00:00, 230.53it/s, binary_acc=0.9619, loss=1.385e+4, running_binary_acc=0.9621, running_loss=1.38e+4]
6/10(v): 100%|██████████| 47/47 [00:00<00:00, 241.06it/s, val_binary_acc=0.9695, val_loss=1.275e+4]
7/10(t): 100%|██████████| 422/422 [00:01<00:00, 227.49it/s, binary_acc=0.9624, loss=1.377e+4, running_binary_acc=0.9624, running_loss=1.381e+4]
7/10(v): 100%|██████████| 47/47 [00:00<00:00, 237.75it/s, val_binary_acc=0.97, val_loss=1.258e+4]
8/10(t): 100%|██████████| 422/422 [00:01<00:00, 220.68it/s, binary_acc=0.9629, loss=1.37e+4, running_binary_acc=0.9629, running_loss=1.369e+4]
8/10(v): 100%|██████████| 47/47 [00:00<00:00, 301.59it/s, val_binary_acc=0.9704, val_loss=1.255e+4]
9/10(t): 100%|██████████| 422/422 [00:01<00:00, 215.23it/s, binary_acc=0.9633, loss=1.364e+4, running_binary_acc=0.9633, running_loss=1.366e+4]
9/10(v): 100%|██████████| 47/47 [00:00<00:00, 309.51it/s, val_binary_acc=0.9707, val_loss=1.25e+4]

The visualised results after ten epochs then look like this:

[image: VAE reconstructions after 10 epochs of mnist]

Source Code

The source code for the example are given below:

Standard:

Download Python source code: vae_standard.py

Using state:

Download Python source code: vae.py

Training a GAN

We shall try to implement something more complicated using torchbearer - a Generative Adverserial Network (GAN).
This tutorial is a modified version of the GAN [https://github.com/eriklindernoren/PyTorch-GAN#gan] from the brilliant collection of GAN implementations PyTorch_GAN [https://github.com/eriklindernoren/PyTorch-GAN] by eriklindernoren on github.

Data and Constants

We first define all constants for the example.

Define constants
epochs = 200
batch_size = 64
lr = 0.0002
nworkers = 8
latent_dim = 100
sample_interval = 400
img_shape = (1, 28, 28)
adversarial_loss = torch.nn.BCELoss()
device = 'cuda'
valid = torch.ones(batch_size, 1, device=device)
fake = torch.zeros(batch_size, 1, device=device)
batch = torch.randn(25, latent_dim).to(device)

We then define a number of state keys for convenience using state_key(). This is optional, however, it automatically avoids key conflicts.

Register state keys (optional)
GEN_IMGS = state_key('gen_imgs')
DISC_GEN = state_key('disc_gen')
DISC_GEN_DET = state_key('disc_gen_det')
DISC_REAL = state_key('disc_real')
G_LOSS = state_key('g_loss')
D_LOSS = state_key('d_loss')

DISC_OPT = state_key('disc_opt')
GEN_OPT = state_key('gen_opt')
DISC_MODEL = state_key('disc_model')
DISC_IMGS = state_key('disc_imgs')
DISC_CRIT = state_key('disc_crit')

We then define the dataset and dataloader - for this example, MNIST.

transform = transforms.Compose([
 transforms.ToTensor(),
 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
dataset = datasets.MNIST('./data/mnist', train=True, download=True, transform=transform)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, drop_last=True)

Model

We use the generator and discriminator from PyTorch_GAN [https://github.com/eriklindernoren/PyTorch-GAN].

class Generator(nn.Module):
 def __init__(self):
 super(Generator, self).__init__()

 def block(in_feat, out_feat, normalize=True):
 layers = [nn.Linear(in_feat, out_feat)]
 if normalize:
 layers.append(nn.BatchNorm1d(out_feat, 0.8))
 layers.append(nn.LeakyReLU(0.2, inplace=True))
 return layers

 self.model = nn.Sequential(
 *block(latent_dim, 128, normalize=False),
 *block(128, 256),
 *block(256, 512),
 *block(512, 1024),
 nn.Linear(1024, int(np.prod(img_shape))),
 nn.Tanh()
)

 def forward(self, real_imgs, state):
 z = Variable(torch.Tensor(np.random.normal(0, 1, (real_imgs.shape[0], latent_dim)))).to(state[tb.DEVICE])
 img = self.model(z)
 img = img.view(img.size(0), *img_shape)
 return img

class Discriminator(nn.Module):
 def __init__(self):
 super(Discriminator, self).__init__()

 self.model = nn.Sequential(
 nn.Linear(int(np.prod(img_shape)), 512),
 nn.LeakyReLU(0.2, inplace=True),
 nn.Linear(512, 256),
 nn.LeakyReLU(0.2, inplace=True),
 nn.Linear(256, 1),
 nn.Sigmoid()
)

 def forward(self, img, state):
 img_flat = img.view(img.size(0), -1)
 validity = self.model(img_flat)

 return validity

We then create the models and optimisers.

Model and optimizer
generator = Generator()
discriminator = Discriminator()
optimizer_G = torch.optim.Adam(generator.parameters(), lr=lr, betas=(0.5, 0.999))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=lr, betas=(0.5, 0.999))

Loss

GANs usually require two different losses, one for the generator and one for the discriminator.
We define these as functions of state so that we can access the discriminator model for the additional forward passes required.

def gen_crit(state):
 loss = adversarial_loss(state[DISC_MODEL](state[tb.Y_PRED], state), valid)
 state[G_LOSS] = loss
 return loss

def disc_crit(state):
 real_loss = adversarial_loss(state[DISC_MODEL](state[tb.X], state), valid)
 fake_loss = adversarial_loss(state[DISC_MODEL](state[tb.Y_PRED].detach(), state), fake)
 loss = (real_loss + fake_loss) / 2
 state[D_LOSS] = loss
 return loss

We will see later how we get a torchbearer trial to use these losses.

Metrics

We would like to follow the discriminator and generator losses during training - note that we added these to state during the model definition.
In torchbearer, state keys are also metrics, so we can take means and running means of them and tell torchbearer to output them as metrics.

from torchbearer.metrics import mean, running_mean
metrics = ['loss', mean(running_mean(D_LOSS)), mean(running_mean(G_LOSS))]

We will add this metric list to the trial when we create it.

Closures

The training loop of a GAN is a bit different to a standard model training loop.
GANs require separate forward and backward passes for the generator and discriminator.
To achieve this in torchbearer we can write a new closure.
Since the individual training loops for the generator and discriminator are the same as a
standard training loop we can use a base_closure().
The base closure takes state keys for required objects (data, model, optimiser, etc.) and returns a standard closure consisting of:

	Zero gradients

	Forward pass

	Loss calculation

	Backward pass

We create a separate closure for the generator and discriminator. We use separate state keys for some objects so we can use them separately, although the loss is easier to deal with in a single key.

from torchbearer.bases import base_closure
closure_gen = base_closure(tb.X, tb.MODEL, tb.Y_PRED, tb.Y_TRUE, tb.CRITERION, tb.LOSS, GEN_OPT)
closure_disc = base_closure(tb.Y_PRED, DISC_MODEL, None, DISC_IMGS, DISC_CRIT, tb.LOSS, DISC_OPT)

We then create a main closure (a simple function of state) that runs both of these and steps the optimisers.

def closure(state):
 closure_gen(state)
 state[GEN_OPT].step()
 closure_disc(state)
 state[DISC_OPT].step()

We will add this closure to the trial next.

Training

We now create the torchbearer trial on the GPU in the standard way.
Note that when torchbearer is passed a None optimiser it creates a mock optimser that will just run the closure.
Since we are using the standard torchbearer state keys for the generator model and criterion, we can pass them in here.

trial = tb.Trial(generator, None, criterion=gen_crit, metrics=metrics, callbacks=[saver_callback])
trial.with_train_generator(dataloader, steps=200000)
trial.to(device)

We now update state with the keys required for the discriminators closure and add the new closure to the trial.
Note that torchbearer doesn’t know the discriminator model is a model here, so we have to sent it to the GPU ourselves.

new_keys = {DISC_MODEL: discriminator.to(device), DISC_OPT: optimizer_D, GEN_OPT: optimizer_G, DISC_CRIT: disc_crit}
trial.state.update(new_keys)
trial.with_closure(closure)

Finally we run the trial.

trial.run(epochs=1)

Visualising

We borrow the image saving method from PyTorch_GAN [https://github.com/eriklindernoren/PyTorch-GAN] and put it in a call back to save on_step_training().
We generate from the same inputs each time to get a better visualisation.

@callbacks.on_step_training
@callbacks.only_if(lambda state: state[tb.BATCH] % sample_interval == 0)
def saver_callback(state):
 samples = state[tb.MODEL](batch, state)
 save_image(samples, 'images/%d.png' % state[tb.BATCH], nrow=5, normalize=True)

Here is a Gif created from the saved images.

[image: GAN generated samples]

Source Code

The source code for the example is given below:

Download Python source code: gan.py

Visualising CNNs: The Class Appearance Model

In this example we will demonstrate the ClassAppearanceModel callback included in torchbearer. This implements
one of the most simple (and therefore not always the most successful) deep visualisation techniques, discussed in the
paper Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps [https://arxiv.org/abs/1312.6034].

Background

The process to obtain Figure 1 from the paper is simple, given a particular target class \(c\), we use
back-propagation to obtain

\(\arg\!\max_I \; S_c(I) - \lambda\Vert I \Vert_2^2\;,\)

where \(S_c(I)\) is the un-normalised score of \(c\) for the image \(I\) given by the network. The
regularisation term \(\Vert I \Vert_2^2\) is necessary to prevent the resultant image from becoming overly noisy.
More recent visualisation techniques use much more advanced regularisers to obtain smoother, more realistic images.

Loading the Model

Since we are just running the callback on a pre-trained model, we don’t need to load any data in this example. Instead,
we use torchvision to load an Inception V1 trained on ImageNet with the following:

class Model(nn.Module):
 def __init__(self):
 super(Model, self).__init__()
 self.net = torchvision.models.googlenet(True)

 def forward(self, input):
 if input is not None:
 return self.net(input)

model = Model()

We need to include the None check as we will initialise the Trial without a dataloader, and so it will pass
None to the model forward.

Running with the Callback

When using imaging callbacks, we commonly need to include an inverse transform to return the images to the right space.
For torchvision, ImageNet models we can use the following:

inv_normalize = transforms.Normalize(
 mean=[-0.485/0.229, -0.456/0.224, -0.406/0.225],
 std=[1/0.229, 1/0.224, 1/0.225]
)

Finally we can construct and run the Trial with:

trial = Trial(model, callbacks=[
 imaging.ClassAppearanceModel(1000, (3, 224, 224), steps=10000, target=951, transform=inv_normalize)
 .on_val().to_file('lemon.png'),
 imaging.ClassAppearanceModel(1000, (3, 224, 224), steps=10000, target=968, transform=inv_normalize)
 .on_val().to_file('cup.png')
])
trial.for_val_steps(1).to('cuda')
trial.evaluate()

Here we create two ClassAppearanceModel instances which target the lemon and cup classes respectively.
Since the ClassAppearanceModel is an ImagingCallback, we use the imaging API to send each of these
to files. Finally, we evaluate the model for a single step to generate the results.

Results

The results for the above code are given below. There some shapes which resemble a lemon or cup, however, not to the
same extent shown in the paper. Because of the simplistic regularisation and objective, this model is highly sensitive
to hyper-parameter choices. These results could almost certainly be improved with some more careful selection.

[image: Class Appearance Model of InceptionV1 for `lemon`]

[image: Class Appearance Model of InceptionV1 for `cup`]

Source Code

The source code for the example is given below:

Download Python source code: cam.py

Optimising functions

Now for something a bit different.
PyTorch is a tensor processing library and whilst it has a focus on neural networks, it can also be used for more standard funciton optimisation.
In this example we will use torchbearer to minimise a simple function.

The Model

First we will need to create something that looks very similar to a neural network model - but with the purpose of minimising our function.
We store the current estimates for the minimum as parameters in the model (so PyTorch optimisers can find and optimise them) and we return the function value in the forward method.

class Net(Module):
 def __init__(self, x):
 super().__init__()
 self.pars = torch.nn.Parameter(x)

 def f(self):
 """
 function to be minimised:
 f(x) = (x[0]-5)^2 + x[1]^2 + (x[2]-1)^2
 Solution:
 x = [5,0,1]
 """
 out = torch.zeros_like(self.pars)
 out[0] = self.pars[0]-5
 out[1] = self.pars[1]
 out[2] = self.pars[2]-1
 return torch.sum(out**2)

 def forward(self, _, state):
 state[ESTIMATE] = self.pars.detach().unsqueeze(1)
 return self.f()

The Loss

For function minimisation we have an analogue to neural network losses - we minimise the value of the function under the current estimates of the minimum.
Note that as we are using a base loss, torchbearer passes this the network output and the “label” (which is of no use here).

def loss(y_pred, y_true):
 return y_pred

Optimising

We need two more things before we can start optimising with torchbearer.
We need our initial guess - which we’ve set to [2.0, 1.0, 10.0] and we need to tell torchbearer how “long” an epoch is - I.e. how many optimisation steps we want for each epoch.
For our simple function, we can complete the optimisation in a single epoch, but for more complex optimisations we might want to take multiple epochs and include tensorboard logging and perhaps learning rate annealing to find a final solution.
We have set the number of optimisation steps for this example as 50000.

p = torch.tensor([2.0, 1.0, 10.0])
training_steps = 50000

The learning rate chosen for this example is very low and we could get convergence much faster with a larger rate, however this allows us to view convergence in real time.
We define the model and optimiser in the standard way.

model = Net(p)
optim = torch.optim.SGD(model.parameters(), lr=0.0001)

Finally we start the optimising on the GPU and print the final minimum estimate.

tbtrial = tb.Trial(model, optim, loss, [tb.metrics.running_mean(ESTIMATE, dim=1), 'loss'])
tbtrial.for_train_steps(training_steps).to('cuda')
tbtrial.run()
print(list(model.parameters())[0].data)

Usually torchbearer will infer the number of training steps from the data generator.
Since for this example we have no data to give the model (which will be passed None), we need to tell torchbearer how many steps to run using the for_train_steps method.

Viewing Progress

You might have noticed in the previous snippet that the example uses a metric we’ve not seen before.
The state key that represents our estimate in state can also act as a metric and is created at the beginning of the file with:

Putting all of it together and running provides the following output:

0/1(t): 100%|██████████| 50000/50000 [00:53<00:00, 931.36it/s, loss=4.5502, running_est=[4.9988, 0.0, 1.0004], running_loss=0.0]

The final estimate is very close to the true minimum at [5, 0, 1]:

tensor([4.9988e+00, 4.5355e-05, 1.0004e+00])

Source Code

The source code for the example is given below:

Download Python source code: basic_opt.py

Linear Support Vector Machine (SVM)

We’ve seen how to frame a problem as a differentiable program in the Optimising Functions example.
Now we can take a look a more usable example; a linear Support Vector Machine (SVM). Note that the model and loss used
in this guide are based on the code found here [https://github.com/kazuto1011/svm-pytorch].

SVM Recap

Recall that an SVM tries to find the maximum margin hyperplane which separates the data classes. For a soft margin SVM
where \(\textbf{x}\) is our data, we minimize:

\(\left[\frac 1 n \sum_{i=1}^n \max\left(0, 1 - y_i(\textbf{w}\cdot \textbf{x}_i - b)\right) \right] + \lambda\lVert \textbf{w} \rVert^2\)

We can formulate this as an optimization over our weights \(\textbf{w}\) and bias \(b\), where we minimize the
hinge loss subject to a level 2 weight decay term. The hinge loss for some model outputs
\(z = \textbf{w}\textbf{x} + b\) with targets \(y\) is given by:

\(\ell(y,z) = \max\left(0, 1 - yz \right)\)

Defining the Model

Let’s put this into code. First we can define our module which will project the data through our weights and offset by
a bias. Note that this is identical to the function of a linear layer.

class LinearSVM(nn.Module):
 """Support Vector Machine"""

 def __init__(self):
 super(LinearSVM, self).__init__()
 self.w = nn.Parameter(torch.randn(1, 2), requires_grad=True)
 self.b = nn.Parameter(torch.randn(1), requires_grad=True)

 def forward(self, x):
 h = x.matmul(self.w.t()) + self.b
 return h

Next, we define the hinge loss function:

def hinge_loss(y_pred, y_true):
 return torch.mean(torch.clamp(1 - y_pred.t() * y_true, min=0))

Creating Synthetic Data

Now for some data, 1024 samples should do the trick. We normalise here so that our random init is in the same space as
the data:

X, Y = make_blobs(n_samples=1024, centers=2, cluster_std=1.2, random_state=1)
X = (X - X.mean()) / X.std()
Y[np.where(Y == 0)] = -1
X, Y = torch.FloatTensor(X), torch.FloatTensor(Y)

Subgradient Descent

Since we don’t know that our data is linearly separable, we would like to use a soft-margin SVM. That is, an SVM for
which the data does not all have to be outside of the margin. This takes the form of a weight decay term,
\(\lambda\lVert \textbf{w} \rVert^2\) in the above equation. This term is called weight decay because the gradient
corresponds to subtracting some amount (\(2\lambda\textbf{w}\)) from our weights at each step. With torchbearer we
can use the L2WeightDecay callback to do this. This whole process is known as subgradient descent because we
only use a mini-batch (of size 32 in our example) at each step to approximate the gradient over all of the data. This is
proven to converge to the minimum for convex functions such as our SVM. At this point we are ready to create and train
our model:

svm = LinearSVM()
model = Trial(svm, optim.SGD(svm.parameters(), 0.1), hinge_loss, ['loss'],
 callbacks=[scatter, draw_margin, ExponentialLR(0.999, step_on_batch=True), L2WeightDecay(0.01, params=[svm.w])]).to('cuda')
model.with_train_data(X, Y, batch_size=32)
model.run(epochs=50, verbose=1)

plt.ioff()
plt.show()

Visualizing the Training

You might have noticed some strange things in the Trial() callbacks list. Specifically, we use the
ExponentialLR callback to anneal the convergence a little and we have a couple of other callbacks:
scatter and draw_margin. These callbacks produce the following live visualisation (note, doesn’t work in
PyCharm, best run from terminal):

[image: Convergence of the SVM decision boundary]

The code for the visualisation (using pyplot [https://matplotlib.org/api/pyplot_api.html]) is a bit ugly but we’ll
try to explain it to some degree. First, we need a mesh grid xy over the range of our data:

delta = 0.01
x = np.arange(X[:, 0].min(), X[:, 0].max(), delta)
y = np.arange(X[:, 1].min(), X[:, 1].max(), delta)
x, y = np.meshgrid(x, y)
xy = list(map(np.ravel, [x, y]))

Next, we have the scatter callback. This happens once at the start of our fit call and draws the figure with a scatter
plot of our data:

@callbacks.on_start
def scatter(_):
 plt.figure(figsize=(5, 5))
 plt.ion()
 plt.scatter(x=X[:, 0], y=X[:, 1], c="black", s=10)

Now things get a little strange. We start by evaluating our model over the mesh grid from earlier:

@callbacks.on_step_training
def draw_margin(state):
 if state[torchbearer.BATCH] % 10 == 0:
 w = state[torchbearer.MODEL].w[0].detach().to('cpu').numpy()
 b = state[torchbearer.MODEL].b[0].detach().to('cpu').numpy()

For our outputs \(z \in \textbf{Z}\), we can make some observations about the decision boundary. First, that we are
outside the margin if \(z \lt -1\) or \(z \gt 1\). Conversely, we are inside the margine where \(z \gt -1\)
or \(z \lt 1\). This gives us some rules for colouring, which we use here:

 z = (w.dot(xy) + b).reshape(x.shape)
 z[np.where(z > 1.)] = 4
 z[np.where((z > 0.) & (z <= 1.))] = 3
 z[np.where((z > -1.) & (z <= 0.))] = 2
 z[np.where(z <= -1.)] = 1

So far it’s been relatively straight forward. The next bit is a bit of a hack to get the update of the contour plot
working. If a reference to the plot is already in state we just remove the old one and add a new one, otherwise we add
it and show the plot. Finally, we call mypause to trigger an update. You could just use plt.pause,
however, it grabs the mouse focus each time it is called which can be annoying. Instead, mypause is taken from
stackoverflow [https://stackoverflow.com/questions/45729092/make-interactive-matplotlib-window-not-pop-to-front-on-each-update-windows-7].

 if CONTOUR in state:
 for coll in state[CONTOUR].collections:
 coll.remove()
 state[CONTOUR] = plt.contourf(x, y, z, cmap=plt.cm.jet, alpha=0.5)
 else:
 state[CONTOUR] = plt.contourf(x, y, z, cmap=plt.cm.jet, alpha=0.5)
 plt.tight_layout()
 plt.show()

 mypause(0.001)

Final Comments

So, there you have it, a fun differentiable programming example with a live visualisation in under 100 lines of code
with torchbearer. It’s easy to see how this could become more useful, perhaps finding a way to use the kernel trick with
the standard form of an SVM (essentially an RBF network). You could also attempt to write some code that saves the gif
from earlier. We had some but it was beyond a hack, can you do better?

Source Code

The source code for the example is given below:

Download Python source code: svm_linear.py

Breaking ADAM

In case you haven’t heard, one of the top papers at ICLR 2018 [https://iclr.cc/Conferences/2018] (pronounced:
eye-clear, who knew?) was On the Convergence of Adam and Beyond [https://openreview.net/forum?id=ryQu7f-RZ]. In the
paper, the authors determine a flaw in the convergence proof of the ubiquitous ADAM optimizer. They also give an example
of a simple function for which ADAM does not converge to the correct solution. We’ve seen how torchbearer can be used
for simple function optimization before and we can do something similar to reproduce the results
from the paper.

Online Optimization

Online learning basically just means learning from one example at a time, in sequence. The function given in the paper
is defined as follows:

\(f_t(x) = \begin{cases}1010x, & \text{for } t \; \texttt{mod} \; 101 = 1 \\ -10x, & \text{otherwise}\end{cases}\)

We can then write this as a PyTorch model whose forward is a function of its parameters with the following:

class Online(Module):
 def __init__(self):
 super().__init__()
 self.x = torch.nn.Parameter(torch.zeros(1))

 def forward(self, _, state):
 """
 function to be minimised:
 f(x) = 1010x if t mod 101 = 1, else -10x
 """
 if state[tb.BATCH] % 101 == 1:
 res = 1010 * self.x
 else:
 res = -10 * self.x

 return res

We now define a loss (simply return the model output) and a metric which returns the value of our parameter \(x\):

def loss(y_pred, _):
 return y_pred

@tb.metrics.to_dict
class est(tb.metrics.Metric):
 def __init__(self):
 super().__init__('est')

 def process(self, state):
 return state[tb.MODEL].x.data

In the paper, \(x\) can only hold values in \([-1, 1]\). We don’t strictly need to do anything but we can write
a callback that greedily updates \(x\) if it is outside of its range as follows:

@tb.callbacks.on_step_training
def greedy_update(state):
 if state[tb.MODEL].x > 1:
 state[tb.MODEL].x.data.fill_(1)
 elif state[tb.MODEL].x < -1:
 state[tb.MODEL].x.data.fill_(-1)

Finally, we can train this model twice; once with ADAM and once with AMSGrad (included in PyTorch) with just a few
lines:

training_steps = 6000000

model = Online()
optim = torch.optim.Adam(model.parameters(), lr=0.001, betas=[0.9, 0.99])
tbtrial = tb.Trial(model, optim, loss, [est()], pass_state=True, callbacks=[greedy_update, TensorBoard(comment='adam', write_graph=False, write_batch_metrics=True, write_epoch_metrics=False)])
tbtrial.for_train_steps(training_steps).run()

model = Online()
optim = torch.optim.Adam(model.parameters(), lr=0.001, betas=[0.9, 0.99], amsgrad=True)
tbtrial = tb.Trial(model, optim, loss, [est()], pass_state=True, callbacks=[greedy_update, TensorBoard(comment='amsgrad', write_graph=False, write_batch_metrics=True, write_epoch_metrics=False)])
tbtrial.for_train_steps(training_steps).run()

Note that we have logged to TensorBoard here and after completion, running tensorboard --logdir logs and
navigating to localhost:6006 [http://localhost:6006], we can see a graph like the one in Figure 1 from the paper,
where the top line is with ADAM and the bottom with AMSGrad:

[image: ADAM failure case - online]

Stochastic Optimization

To simulate a stochastic setting, the authors use a slight variant of the function, which changes with some probability:

\(f_t(x) = \begin{cases}1010x, & \text{with probability } 0.01 \\ -10x, & \text{otherwise}\end{cases}\)

We can again formulate this as a PyToch model:

class Stochastic(Module):
 def __init__(self):
 super().__init__()
 self.x = torch.nn.Parameter(torch.zeros(1))

 def forward(self, _):
 """
 function to be minimised:
 f(x) = 1010x with probability 0.01, else -10x
 """
 if random.random() <= 0.01:
 res = 1010 * self.x
 else:
 res = -10 * self.x

 return res

Using the loss, callback and metric from our previous example, we can train with the following:

model = Stochastic()
optim = torch.optim.Adam(model.parameters(), lr=0.001, betas=[0.9, 0.99])
tbtrial = tb.Trial(model, optim, loss, [est()], callbacks=[greedy_update, TensorBoard(comment='adam', write_graph=False, write_batch_metrics=True, write_epoch_metrics=False)])
tbtrial.for_train_steps(training_steps).run()

model = Stochastic()
optim = torch.optim.Adam(model.parameters(), lr=0.001, betas=[0.9, 0.99], amsgrad=True)
tbtrial = tb.Trial(model, optim, loss, [est()], callbacks=[greedy_update, TensorBoard(comment='amsgrad', write_graph=False, write_batch_metrics=True, write_epoch_metrics=False)])
tbtrial.for_train_steps(training_steps).run()

After execution has finished, again running tensorboard --logdir logs and navigating to
localhost:6006 [http://localhost:6006], we see another graph similar to that of the stochastic setting in Figure 1 of
the paper, where the top line is with ADAM and the bottom with AMSGrad:

[image: ADAM failure case - stochastic]

Conclusions

So, whatever your thoughts on the AMSGrad optimizer in practice, it’s probably the sign of a good paper that you can
re-implement the example and get very similar results without having to try too hard and (thanks to torchbearer) only
writing a small amount of code. The paper includes some more complex, ‘real-world’ examples, can you re-implement those
too?

Source Code

The source code for this example can be downloaded below:

Download Python source code: amsgrad.py

torchbearer

Trial

	
class torchbearer.trial.CallbackListInjection(callback, callback_list)

	This class allows for an callback to be injected into a callback list, without masking the methods available for
mutating the list. In this way, callbacks (such as printers) can be injected seamlessly into the methods of the
trial class.

	Parameters

	
	callback (Callback) – The Callback to inject

	callback_list (CallbackList) – The underlying CallbackList

	
append(callback_list)

	

	
copy()

	

	
load_state_dict(state_dict)

	Resume this callback list from the given state. Callbacks must be given in the same order for this to work.

	Parameters

	state_dict (dict) – The state dict to reload

	Returns

	self

	Return type

	CallbackList

	
state_dict()

	Get a dict containing all of the callback states.

	Returns

	A dict containing parameters and persistent buffers.

	Return type

	dict

	
class torchbearer.trial.MockOptimizer

	The Mock Optimizer will be used inplace of an optimizer in the event that none is passed to the Trial class.

	
add_param_group(param_group)

	

	
load_state_dict(state_dict)

	

	
state_dict()

	

	
step(closure=None)

	

	
zero_grad()

	

	
class torchbearer.trial.Sampler(batch_loader)

	Sampler wraps a batch loader function and executes it when Sampler.sample() is called

	Parameters

	batch_loader (func) – The batch loader to execute

	
sample(state)

	

	
class torchbearer.trial.Trial(model, optimizer=None, criterion=None, metrics=[], callbacks=[], verbose=2)

	The trial class contains all of the required hyper-parameters for model running in torchbearer and presents an
API for model fitting, evaluating and predicting.

@article{2018torchbearer,
 title={Torchbearer: A Model Fitting Library for PyTorch},
 author={Harris, Ethan and Painter, Matthew and Hare, Jonathon},
 journal={arXiv preprint arXiv:1809.03363},
 year={2018}
}

	Parameters

	
	model (torch.nn.Module) – The base pytorch model

	optimizer (torch.optim.Optimizer) – The optimizer used for pytorch model weight updates

	criterion (func / None) – The final loss criterion that provides a loss value to the optimizer

	metrics (list) – The list of torchbearer.Metric instances to process during fitting

	callbacks (list) – The list of torchbearer.Callback instances to call during fitting

	verbose (int) – Global verbosity .If 2: use tqdm on batch, If 1: use tqdm on epoch, If 0: display no training
progress

	
cpu()

	Moves all model parameters and buffers to the CPU.

	Returns

	self

	Return type

	Trial

	
cuda(device=None)

	Moves all model parameters and buffers to the GPU.

	Parameters

	device (int) – if specified, all parameters will be copied to that device

	Returns

	self

	Return type

	Trial

	
eval()

	Set model and metrics to evaluation mode

	Returns

	self

	Return type

	Trial

	
evaluate(verbose=-1, data_key=None)

	Evaluate this trial on the validation data.

	Parameters

	
	verbose (int) – If 2: use tqdm on batch, If 1: use tqdm on epoch, If 0: display no training progress, If -1: Automatic

	data_key (StateKey) – Optional StateKey for the data to evaluate on. Default: torchbearer.VALIDATION_DATA

	Returns

	The final metric values

	Return type

	dict

	
for_inf_steps(train=True, val=True, test=True)

	Use this trail with infinite steps. Returns self so that methods can be chained for convenience.

	Parameters

	
	train (bool) – Use an infinite number of training steps

	val (bool) – Use an infinite number of validation steps

	test (bool) – Use an infinite number of test steps

	Returns

	self

	Return type

	Trial

	
for_inf_test_steps()

	Use this trial with an infinite number of test steps (until stopped via STOP_TRAINING flag or similar).
Returns self so that methods can be chained for convenience.

	Returns

	self

	Return type

	Trial

	
for_inf_train_steps()

	Use this trial with an infinite number of training steps (until stopped via STOP_TRAINING flag or similar).
Returns self so that methods can be chained for convenience.

	Returns

	self

	Return type

	Trial

	
for_inf_val_steps()

	Use this trial with an infinite number of validation steps (until stopped via STOP_TRAINING flag or similar).
Returns self so that methods can be chained for convenience.

	Returns

	self

	Return type

	Trial

	
for_steps(train_steps=None, val_steps=None, test_steps=None)

	Use this trial for the given number of train, val and test steps. Returns self so that methods can be chained
for convenience. If steps larger than dataset size then loader will be refreshed like if it was a new epoch. If
steps -1 then loader will be refreshed until stopped by STOP_TRAINING flag or similar.

	Parameters

	
	train_steps (int) – The number of training steps per epoch to run

	val_steps (int) – The number of validation steps per epoch to run

	test_steps (int) – The number of test steps per epoch to run (when using predict())

	Returns

	self

	Return type

	Trial

	
for_test_steps(steps)

	Run this trial for the given number of test steps. Note that the generator will output (None, None) if
it has not been set. Useful for differentiable programming. Returns self so that methods can be chained for
convenience. If steps larger than dataset size then loader will be refreshed like if it was a new epoch. If
steps -1 then loader will be refreshed until stopped by STOP_TRAINING flag or similar.

	Parameters

	steps (int) – The number of test steps per epoch to run (when using predict())

	Returns

	self

	Return type

	Trial

	
for_train_steps(steps)

	Run this trial for the given number of training steps. Note that the generator will output (None, None) if it
has not been set. Useful for differentiable programming. Returns self so that methods can be chained for
convenience. If steps is larger than dataset size then loader will be refreshed like if it was a new epoch. If
steps is -1 then loader will be refreshed until stopped by STOP_TRAINING flag or similar.

	Parameters

	steps (int) – The number of training steps per epoch to run.

	Returns

	self

	Return type

	Trial

	
for_val_steps(steps)

	Run this trial for the given number of validation steps. Note that the generator will output (None, None) if
it has not been set. Useful for differentiable programming. Returns self so that methods can be chained for
convenience. If steps larger than dataset size then loader will be refreshed like if it was a new epoch. If
steps -1 then loader will be refreshed until stopped by STOP_TRAINING flag or similar.

	Parameters

	steps (int) – The number of validation steps per epoch to run

	Returns

	self

	Return type

	Trial

	
load_state_dict(state_dict, resume=True, **kwargs)

	Resume this trial from the given state. Expects that this trial was constructed in the same way. Optionally,
just load the model state when resume=False.

	Parameters

	
	state_dict (dict) – The state dict to reload

	resume (bool) – If True, resume from the given state. Else, just load in the model weights.

	kwargs – See: torch.nn.Module.load_state_dict [https://pytorch.org/docs/stable/nn.html?highlight=#torch.nn.Module.load_state_dict]

	Returns

	self

	Return type

	Trial

	
predict(verbose=-1, data_key=None)

	Determine predictions for this trial on the test data.

	Parameters

	
	verbose (int) – If 2: use tqdm on batch, If 1: use tqdm on epoch, If 0: display no training progress, If -1: Automatic

	data_key (StateKey) – Optional StateKey for the data to predict on. Default: torchbearer.TEST_DATA

	Returns

	Model outputs as a list

	Return type

	list

	
replay(callbacks=[], verbose=2, one_batch=False)

	Replay the fit passes stored in history with given callbacks, useful when reloading a saved Trial. Note that only progress and metric information is populated in state during a replay.

	Parameters

	
	callbacks (list) – List of callbacks to be run during the replay

	verbose (int) – If 2: use tqdm on batch, If 1: use tqdm on epoch, If 0: display no training progress

	one_batch (bool) – If True, only one batch per epoch is replayed. If False, all batches are replayed

	Returns

	self

	Return type

	Trial

	
run(epochs=1, verbose=-1)

	Run this trial for the given number of epochs, starting from the last trained epoch.

	Parameters

	
	epochs (int, optional) – The number of epochs to run for

	verbose (int, optional) – If 2: use tqdm on batch, If 1: use tqdm on epoch, If 0: display no training

	If -1 (progress,) – Automatic

	State Requirements:

	
	torchbearer.state.MODEL: Model should be callable and not none, set on Trial init

	Returns

	The model history (list of tuple of steps summary and epoch metric dicts)

	Return type

	list

	
state_dict(**kwargs)

	Get a dict containing the model and optimizer states, as well as the model history.

	Parameters

	kwargs – See: torch.nn.Module.state_dict [https://pytorch.org/docs/stable/nn.html?highlight=#torch.nn.Module.state_dict]

	Returns

	A dict containing parameters and persistent buffers.

	Return type

	dict

	
to(*args, **kwargs)

	Moves and/or casts the parameters and buffers.

	Parameters

	
	args – See: torch.nn.Module.to [https://pytorch.org/docs/stable/nn.html?highlight=#torch.nn.Module.to]

	kwargs – See: torch.nn.Module.to [https://pytorch.org/docs/stable/nn.html?highlight=#torch.nn.Module.to]

	Returns

	self

	Return type

	Trial

	
train()

	Set model and metrics to training mode.

	Returns

	self

	Return type

	Trial

	
with_closure(closure)

	Use this trial with custom closure

	Parameters

	closure (function) – Function of state that defines the custom closure

	Returns

	self:

	Return type

	Trial

	
with_generators(train_generator=None, val_generator=None, test_generator=None, train_steps=None, val_steps=None, test_steps=None)

	Use this trial with the given generators. Returns self so that methods can be chained for convenience.

	Parameters

	
	train_generator – The training data generator to use during calls to run()

	val_generator – The validation data generator to use during calls to run() and evaluate()

	test_generator – The testing data generator to use during calls to predict()

	train_steps (int) – The number of steps per epoch to take when using the training generator

	val_steps (int) – The number of steps per epoch to take when using the validation generator

	test_steps (int) – The number of steps per epoch to take when using the testing generator

	Returns

	self

	Return type

	Trial

	
with_inf_train_loader()

	Use this trial with a training iterator that refreshes when it finishes instead of each epoch.
This allows for setting training steps less than the size of the generator and model will still be trained on
all training samples if enough “epochs” are run.

	Returns

	self:

	Return type

	Trial

	
with_test_data(x, batch_size=1, num_workers=1, steps=None)

	Use this trial with the given test data. Returns self so that methods can be chained for convenience.

	Parameters

	
	x (torch.Tensor) – The test x data to use during calls to predict()

	batch_size (int) – The size of each batch to sample from the data

	num_workers (int) – Number of worker threads to use in the data loader

	steps (int) – The number of steps per epoch to take when using this data

	Returns

	self

	Return type

	Trial

	
with_test_generator(generator, steps=None)

	Use this trial with the given test generator. Returns self so that methods can be chained for convenience.

	Parameters

	
	generator – The test data generator to use during calls to predict()

	steps (int) – The number of steps per epoch to take when using this generator

	Returns

	self

	Return type

	Trial

	
with_train_data(x, y, batch_size=1, shuffle=True, num_workers=1, steps=None)

	Use this trial with the given train data. Returns self so that methods can be chained for convenience.

	Parameters

	
	x (torch.Tensor) – The train x data to use during calls to run()

	y (torch.Tensor) – The train labels to use during calls to run()

	batch_size (int) – The size of each batch to sample from the data

	shuffle (bool) – If True, then data will be shuffled each epoch

	num_workers (int) – Number of worker threads to use in the data loader

	steps (int) – The number of steps per epoch to take when using this data

	Returns

	self

	Return type

	Trial

	
with_train_generator(generator, steps=None)

	Use this trial with the given train generator. Returns self so that methods can be chained for convenience.

	Parameters

	
	generator – The train data generator to use during calls to run()

	steps (int) – The number of steps per epoch to take when using this generator.

	Returns

	self

	Return type

	Trial

	
with_val_data(x, y, batch_size=1, shuffle=True, num_workers=1, steps=None)

	Use this trial with the given validation data. Returns self so that methods can be chained for convenience.

	Parameters

	
	x (torch.Tensor) – The validation x data to use during calls to run() and evaluate()

	y (torch.Tensor) – The validation labels to use during calls to run() and evaluate()

	batch_size (int) – The size of each batch to sample from the data

	shuffle (bool) – If True, then data will be shuffled each epoch

	num_workers (int) – Number of worker threads to use in the data loader

	steps (int) – The number of steps per epoch to take when using this data

	Returns

	self

	Return type

	Trial

	
with_val_generator(generator, steps=None)

	Use this trial with the given validation generator. Returns self so that methods can be chained for
convenience.

	Parameters

	
	generator – The validation data generator to use during calls to run() and evaluate()

	steps (int) – The number of steps per epoch to take when using this generator

	Returns

	self

	Return type

	Trial

	
torchbearer.trial.deep_to(batch, device, dtype)

	Static method to call to() on tensors or tuples. All items in tuple will have deep_to() called

	Parameters

	
	batch (tuple / list / torch.Tensor) – The mini-batch which requires a to() call

	device (torch.device) – The desired device of the batch

	dtype (torch.dtype) – The desired datatype of the batch

	Returns

	The moved or casted batch

	Return type

	tuple / list / torch.Tensor

	
torchbearer.trial.get_default(fcn, arg)

	

	
torchbearer.trial.get_printer(verbose, validation_label_letter)

	

	
torchbearer.trial.inject_callback(callback)

	Decorator to inject a callback into the callback list and remove the callback after the decorated function has executed

	Parameters

	callback (Callback) – Callback to be injected

	Returns

	The decorator

	
torchbearer.trial.inject_printer(validation_label_letter='v')

	The inject printer decorator is used to inject the appropriate printer callback, according to the verbosity level.

	Parameters

	validation_label_letter (str) – The validation label letter to use

	Returns

	A decorator

	
torchbearer.trial.inject_sampler(data_key, predict=False)

	Decorator to inject a Sampler into state[torchbearer.SAMPLER] along with the specified generator into state[torchbearer.GENERATOR] and number of steps into state[torchbearer.STEPS]

	Parameters

	
	data_key (StateKey) – StateKey for the data to inject

	predict (bool) – If true, the prediction batch loader is used, if false the standard data loader is used

	Returns

	The decorator

	
torchbearer.trial.load_batch_infinite(loader)

	Wraps a batch loader and refreshes the iterator once it has been completed.

	Parameters

	loader – batch loader to wrap

	
torchbearer.trial.load_batch_none(state)

	Load a none (none, none) tuple mini-batch into state

	Parameters

	state (dict) – The current state dict of the Trial.

	
torchbearer.trial.load_batch_predict(state)

	Load a prediction (input data, target) or (input data) mini-batch from iterator into state

	Parameters

	state (dict) – The current state dict of the Trial.

	
torchbearer.trial.load_batch_standard(state)

	Load a standard (input data, target) tuple mini-batch from iterator into state

	Parameters

	state (dict) – The current state dict of the Trial.

	
torchbearer.trial.update_device_and_dtype(state, *args, **kwargs)

	Function get data type and device values from the args / kwargs and update state.

	Parameters

	
	state (State) – The State to update

	args – Arguments to the Trial.to() function

	kwargs – Keyword arguments to the Trial.to() function

	Returns

	device, dtype pair

State

The state is central in torchbearer, storing all of the relevant intermediate values that may be changed or replaced
during model fitting. This module defines classes for interacting with state and all of the built in state keys used
throughout torchbearer. The state_key() function can be used to create custom state keys for use in callbacks or
metrics.

Example:

from torchbearer import state_key
MY_KEY = state_key('my_test_key')

	
torchbearer.state.BACKWARD_ARGS = backward_args

	The optional arguments which should be passed to the backward call

	
torchbearer.state.BATCH = t

	The current batch number

	
torchbearer.state.CALLBACK_LIST = callback_list

	The CallbackList object which is called by the Trial

	
torchbearer.state.CRITERION = criterion

	The criterion to use when model fitting

	
torchbearer.state.DATA = data

	The string name of the current data

	
torchbearer.state.DATA_TYPE = dtype

	The data type of tensors in use by the model, match this to avoid type issues

	
torchbearer.state.DEVICE = device

	The device currently in use by the Trial and PyTorch model

	
torchbearer.state.EPOCH = epoch

	The current epoch number

	
torchbearer.state.FINAL_PREDICTIONS = final_predictions

	The key which maps to the predictions over the dataset when calling predict

	
torchbearer.state.GENERATOR = generator

	The current data generator (DataLoader)

	
torchbearer.state.HISTORY = history

	The history list of the Trial instance

	
torchbearer.state.INF_TRAIN_LOADING = inf_train_loading

	Flag for refreshing of training iterator when finished instead of each epoch

	
torchbearer.state.INPUT = x

	The current batch of inputs

	
torchbearer.state.ITERATOR = iterator

	The current iterator

	
torchbearer.state.LOSS = loss

	The current value for the loss

	
torchbearer.state.MAX_EPOCHS = max_epochs

	The total number of epochs to run for

	
torchbearer.state.METRICS = metrics

	The metric dict from the current batch of data

	
torchbearer.state.METRIC_LIST = metric_list

	The list of metrics in use by the Trial

	
torchbearer.state.MODEL = model

	The PyTorch module / model that will be trained

	
torchbearer.state.OPTIMIZER = optimizer

	The optimizer to use when model fitting

	
torchbearer.state.PREDICTION = y_pred

	The current batch of predictions

	
torchbearer.state.SAMPLER = sampler

	The sampler which loads data from the generator onto the correct device

	
torchbearer.state.SELF = self

	A self refrence to the Trial object for persistence etc.

	
torchbearer.state.STEPS = steps

	The current number of steps per epoch

	
torchbearer.state.STOP_TRAINING = stop_training

	A flag that can be set to true to stop the current fit call

	
class torchbearer.state.State

	State dictionary that behaves like a python dict but accepts StateKeys

	
data

	

	
get_key(statekey)

	

	
update([E,]**F) → None. Update D from dict/iterable E and F.

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]

	
class torchbearer.state.StateKey(key)

	StateKey class that is a unique state key based on the input string key. State keys are also metrics which
retrieve themselves from state.

	Parameters

	key (str) – Base key

	
process(state)

	Process the state and update the metric for one iteration.

	Parameters

	args – Arguments given to the metric. If this is a root level metric, will be given state

	Returns

	None, or the value of the metric for this batch

	
process_final(state)

	Process the terminal state and output the final value of the metric.

	Parameters

	args – Arguments given to the metric. If this is a root level metric, will be given state

	Returns

	None or the value of the metric for this epoch

	
torchbearer.state.TARGET = y_true

	The current batch of ground truth data

	
torchbearer.state.TEST_DATA = test_data

	The flag representing test data

	
torchbearer.state.TEST_GENERATOR = test_generator

	The test data generator in the Trial object

	
torchbearer.state.TEST_STEPS = test_steps

	The number of test steps to take

	
torchbearer.state.TIMINGS = timings

	The timings keys used by the timer callback

	
torchbearer.state.TRAIN_DATA = train_data

	The flag representing train data

	
torchbearer.state.TRAIN_GENERATOR = train_generator

	The train data generator in the Trial object

	
torchbearer.state.TRAIN_STEPS = train_steps

	The number of train steps to take

	
torchbearer.state.VALIDATION_DATA = validation_data

	The flag representing validation data

	
torchbearer.state.VALIDATION_GENERATOR = validation_generator

	The validation data generator in the Trial object

	
torchbearer.state.VALIDATION_STEPS = validation_steps

	The number of validation steps to take

	
torchbearer.state.VERSION = torchbearer_version

	The torchbearer version

	
torchbearer.state.X = x

	The current batch of inputs

	
torchbearer.state.Y_PRED = y_pred

	The current batch of predictions

	
torchbearer.state.Y_TRUE = y_true

	The current batch of ground truth data

	
torchbearer.state.state_key(key)

	Computes and returns a non-conflicting key for the state dictionary when given a seed key

	Parameters

	key (str) – The seed key - basis for new state key

	Returns

	New state key

	Return type

	StateKey

Utilities

	
class torchbearer.cv_utils.DatasetValidationSplitter(dataset_len, split_fraction, shuffle_seed=None)

	
	
get_train_dataset(dataset)

	Creates a training dataset from existing dataset

	Parameters

	dataset (torch.utils.data.Dataset) – Dataset to be split into a training dataset

	Returns

	Training dataset split from whole dataset

	Return type

	torch.utils.data.Dataset

	
get_val_dataset(dataset)

	Creates a validation dataset from existing dataset

Args:
dataset (torch.utils.data.Dataset): Dataset to be split into a validation dataset

	Returns

	Validation dataset split from whole dataset

	Return type

	torch.utils.data.Dataset

	
class torchbearer.cv_utils.SubsetDataset(dataset, ids)

	

	
torchbearer.cv_utils.get_train_valid_sets(x, y, validation_data, validation_split, shuffle=True)

	Generate validation and training datasets from whole dataset tensors

	Parameters

	
	x (torch.Tensor) – Data tensor for dataset

	y (torch.Tensor) – Label tensor for dataset

	validation_data ((torch.Tensor, torch.Tensor)) – Optional validation data (x_val, y_val) to be
used instead of splitting x and y tensors

	validation_split (float) – Fraction of dataset to be used for validation

	shuffle (bool) – If True randomize tensor order before splitting else do not randomize

	Returns

	Training and validation datasets

	
torchbearer.cv_utils.train_valid_splitter(x, y, split, shuffle=True)

	Generate training and validation tensors from whole dataset data and label tensors

	Parameters

	
	x (torch.Tensor) – Data tensor for whole dataset

	y (torch.Tensor) – Label tensor for whole dataset

	split (float) – Fraction of dataset to be used for validation

	shuffle (bool) – If True randomize tensor order before splitting else do not randomize

	Returns

	Training and validation tensors (training data, training labels, validation data, validation labels)

torchbearer.callbacks

Base Classes

	
class torchbearer.bases.Callback

	Base callback class.

Note

All callbacks should override this class.

	
load_state_dict(state_dict)

	Resume this callback from the given state. Expects that this callback was constructed in the same way.

	Parameters

	state_dict (dict) – The state dict to reload

	Returns

	self

	Return type

	Callback

	
on_backward(state)

	Perform some action with the given state as context after backward has been called on the loss.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_checkpoint(state)

	Perform some action with the state after all other callbacks have completed at the end of an epoch and the
history has been updated. Should only be used for taking checkpoints or snapshots and will only be called by the
run method of Trial.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_criterion(state)

	Perform some action with the given state as context after the criterion has been evaluated.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_criterion_validation(state)

	Perform some action with the given state as context after the criterion evaluation has been completed
with the validation data.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_end(state)

	Perform some action with the given state as context at the end of the model fitting.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_end_epoch(state)

	Perform some action with the given state as context at the end of each epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_end_training(state)

	Perform some action with the given state as context after the training loop has completed.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_end_validation(state)

	Perform some action with the given state as context at the end of the validation loop.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_forward(state)

	Perform some action with the given state as context after the forward pass (model output) has been completed.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_forward_validation(state)

	Perform some action with the given state as context after the forward pass (model output) has been completed
with the validation data.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_init(state)

	Perform some action with the given state as context at the init of a trial instance

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_sample(state)

	Perform some action with the given state as context after data has been sampled from the generator.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_sample_validation(state)

	Perform some action with the given state as context after data has been sampled from the validation generator.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_start(state)

	Perform some action with the given state as context at the start of a model fit.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_start_epoch(state)

	Perform some action with the given state as context at the start of each epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_start_training(state)

	Perform some action with the given state as context at the start of the training loop.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_start_validation(state)

	Perform some action with the given state as context at the start of the validation loop.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_step_training(state)

	Perform some action with the given state as context after step has been called on the optimiser.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_step_validation(state)

	Perform some action with the given state as context at the end of each validation step.

	Parameters

	state (dict) – The current state dict of the Trial.

	
state_dict()

	Get a dict containing the callback state.

	Returns

	A dict containing parameters and persistent buffers.

	Return type

	dict

	
class torchbearer.callbacks.callbacks.CallbackList(callback_list)

	The CallbackList class is a wrapper for a list of callbacks which acts as a single Callback and
internally calls each Callback in the given list in turn.

	Parameters

	callback_list (list) – The list of callbacks to be wrapped. If the list contains a CallbackList, this
will be unwrapped.

	
CALLBACK_STATES = 'callback_states'

	

	
CALLBACK_TYPES = 'callback_types'

	

	
append(callback_list)

	

	
copy()

	

	
load_state_dict(state_dict)

	Resume this callback list from the given state. Callbacks must be given in the same order for this to work.

	Parameters

	state_dict (dict) – The state dict to reload

	Returns

	self

	Return type

	CallbackList

	
on_backward(state)

	Call on_backward on each callback in turn with the given state.

	Parameters

	state (dict[str,any]) – The current state dict of the Trial.

	
on_checkpoint(state)

	Call on_checkpoint on each callback in turn with the given state.

	Parameters

	state (dict[str,any]) – The current state dict of the Trial.

	
on_criterion(state)

	Call on_criterion on each callback in turn with the given state.

	Parameters

	state (dict[str,any]) – The current state dict of the Trial.

	
on_criterion_validation(state)

	Call on_criterion_validation on each callback in turn with the given state.

	Parameters

	state (dict[str,any]) – The current state dict of the Trial.

	
on_end(state)

	Call on_end on each callback in turn with the given state.

	Parameters

	state (dict[str,any]) – The current state dict of the Trial.

	
on_end_epoch(state)

	Call on_end_epoch on each callback in turn with the given state.

	Parameters

	state (dict[str,any]) – The current state dict of the Trial.

	
on_end_training(state)

	Call on_end_training on each callback in turn with the given state.

	Parameters

	state (dict[str,any]) – The current state dict of the Trial.

	
on_end_validation(state)

	Call on_end_validation on each callback in turn with the given state.

	Parameters

	state (dict[str,any]) – The current state dict of the Trial.

	
on_forward(state)

	Call on_forward on each callback in turn with the given state.

	Parameters

	state (dict[str,any]) – The current state dict of the Trial.

	
on_forward_validation(state)

	Call on_forward_validation on each callback in turn with the given state.

	Parameters

	state (dict[str,any]) – The current state dict of the Trial.

	
on_init(state)

	Call on_init on each callback in turn with the given state.

	Parameters

	state (dict[str,any]) – The current state dict of the Trial.

	
on_sample(state)

	Call on_sample on each callback in turn with the given state.

	Parameters

	state (dict[str,any]) – The current state dict of the Trial.

	
on_sample_validation(state)

	Call on_sample_validation on each callback in turn with the given state.

	Parameters

	state (dict[str,any]) – The current state dict of the Trial.

	
on_start(state)

	Call on_start on each callback in turn with the given state.

	Parameters

	state (dict[str,any]) – The current state dict of the Trial.

	
on_start_epoch(state)

	Call on_start_epoch on each callback in turn with the given state.

	Parameters

	state (dict[str,any]) – The current state dict of the Trial.

	
on_start_training(state)

	Call on_start_training on each callback in turn with the given state.

	Parameters

	state (dict[str,any]) – The current state dict of the Trial.

	
on_start_validation(state)

	Call on_start_validation on each callback in turn with the given state.

	Parameters

	state (dict[str,any]) – The current state dict of the Trial.

	
on_step_training(state)

	Call on_step_training on each callback in turn with the given state.

	Parameters

	state (dict[str,any]) – The current state dict of the Trial.

	
on_step_validation(state)

	Call on_step_validation on each callback in turn with the given state.

	Parameters

	state (dict[str,any]) – The current state dict of the Trial.

	
state_dict()

	Get a dict containing all of the callback states.

	Returns

	A dict containing parameters and persistent buffers.

	Return type

	dict

Imaging

Main Classes

	
class torchbearer.callbacks.imaging.imaging.CachingImagingCallback(key=x, transform=None, num_images=16)

	The CachingImagingCallback is an ImagingCallback which caches batches of images from the given
state key up to the required amount before passing this along with state to the implementing class, once per epoch.

	Parameters

	
	key (StateKey) – The StateKey containing image data (tensor of size [b, c, w, h])

	transform (callable, optional) – A function/transform that takes in a Tensor and returns a transformed version.
This will be applied to the image before it is sent to output.

	num_images – The number of images to cache

	
on_batch(state)

	

	
on_cache(cache, state)

	This method should be implemented by the overriding class to return an image from the cache.

	Parameters

	
	cache (tensor) – The collected cache of size (num_images, C, W, H)

	state (dict) – The trial state dict

	Returns

	The processed image

	
on_end_epoch(state)

	Perform some action with the given state as context at the end of each epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
class torchbearer.callbacks.imaging.imaging.FromState(key, transform=None, decorator=<function once_per_epoch>)

	The FromState callback is an ImagingCallback which retrieves and image from state when called.
The number of times the function is called can be controlled with a provided decorator (once_per_epoch, only_if
etc.)

	Parameters

	
	key (StateKey) – The StateKey containing the image (tensor of size [c, w, h])

	transform (callable, optional) – A function/transform that takes in a Tensor and returns a transformed version.
This will be applied to the image before it is sent to output.

	decorator – A function which will be used to wrap the callback function. once_per_epoch by default

	
on_batch(state)

	

	
class torchbearer.callbacks.imaging.imaging.ImagingCallback(transform=None)

	The ImagingCallback provides a generic interface for callbacks which yield images that should be sent to
a file, tensorboard, visdom etc. without needing bespoke code. This allows the user to easily define custom
visualisations by only writing the code to produce the image.

	Parameters

	transform (callable, optional) – A function/transform that takes in a Tensor and returns a transformed version.
This will be applied to the image before it is sent to output.

	
on_batch(state)

	

	
on_test()

	Process this callback for test batches

	Returns

	self

	Return type

	ImagingCallback

	
on_train()

	Process this callback for training batches

	Returns

	self

	Return type

	ImagingCallback

	
on_val()

	Process this callback for validation batches

	Returns

	self

	Return type

	ImagingCallback

	
process(state)

	

	
to_file(filename)

	Send images from this callback to the given file

	Parameters

	filename (str) – the filename to store the image to

	Returns

	self

	Return type

	ImagingCallback

	
to_pyplot()

	Show images from this callback with pyplot

	Returns

	self

	Return type

	ImagingCallback

	
to_state(key)

	Put images from this callback in state with the given key

	Parameters

	key (StateKey) – The state key to use for the image

	Returns

	self

	Return type

	ImagingCallback

	
to_tensorboard(name='Image', log_dir='./logs', comment='torchbearer')

	Direct images from this callback to tensorboard with the given parameters

	Parameters

	
	name (str) – The name of the image

	log_dir (str) – The tensorboard log path for output

	comment (str) – Descriptive comment to append to path

	Returns

	self

	Return type

	ImagingCallback

	
to_visdom(name='Image', log_dir='./logs', comment='torchbearer', visdom_params=None)

	Direct images from this callback to visdom with the given parameters

	Parameters

	
	name (str) – The name of the image

	log_dir (str) – The visdom log path for output

	comment (str) – Descriptive comment to append to path

	visdom_params (VisdomParams) – Visdom parameter settings object, uses default if None

	Returns

	self

	Return type

	ImagingCallback

	
with_handler(handler)

	Append the given output handler to the list of handlers

	Parameters

	handler – A function of image and state which stores the given image in some way

	Returns

	self

	Return type

	ImagingCallback

	
class torchbearer.callbacks.imaging.imaging.MakeGrid(key=x, transform=None, num_images=16, nrow=8, padding=2, normalize=False, norm_range=None, scale_each=False, pad_value=0)

	The MakeGrid callback is a CachingImagingCallback which calls make grid on the cache with the
provided parameters.

	Parameters

	
	key (StateKey) – The StateKey containing image data (tensor of size [b, c, w, h])

	transform (callable, optional) – A function/transform that takes in a Tensor and returns a transformed version.
This will be applied to the image before it is sent to output.

	num_images – The number of images to cache

	nrow – See torchvision.utils.make_grid [https://pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_grid]

	padding – See torchvision.utils.make_grid [https://pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_grid]

	normalize – See torchvision.utils.make_grid [https://pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_grid]

	norm_range – See torchvision.utils.make_grid [https://pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_grid]

	scale_each – See torchvision.utils.make_grid [https://pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_grid]

	pad_value – See torchvision.utils.make_grid [https://pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_grid]

	
on_cache(cache, state)

	This method should be implemented by the overriding class to return an image from the cache.

	Parameters

	
	cache (tensor) – The collected cache of size (num_images, C, W, H)

	state (dict) – The trial state dict

	Returns

	The processed image

Deep Inside Convolutional Networks

	
class torchbearer.callbacks.imaging.inside_cnns.ClassAppearanceModel(nclasses, input_size, optimizer_factory=<function ClassAppearanceModel.<lambda>>, steps=1024, logit_key=y_pred, prob_key=None, target=-10, decay=0.001, verbose=0, transform=None)

	The ClassAppearanceModel callback implements Figure 1 from
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps [https://arxiv.org/abs/1312.6034].
This is a simple gradient ascent on an image (initialised to zero) with a sum-squares regularizer. Internally this
creates a new Trial instance which then performs the optimization.

@article{simonyan2013deep,
 title={Deep inside convolutional networks: Visualising image classification models and saliency maps},
 author={Simonyan, Karen and Vedaldi, Andrea and Zisserman, Andrew},
 journal={arXiv preprint arXiv:1312.6034},
 year={2013}
}

	Parameters

	
	nclasses (int) – The number of output classes

	input_size (tuple) – The size to use for the input image

	optimizer_factory – A function of parameters which returns an optimizer to use

	logit_key (StateKey) – StateKey storing the class logits

	prob_key (StateKey) – StateKey storing the class probabilities or None if using logits

	target (int) – Target class for the optimisation or RANDOM

	steps (int) – Number of optimisation steps to take

	decay (float) – Lambda for the L2 decay on the image

	verbose (int) – Verbosity level to pass to the internal Trial instance

	transform (callable, optional) – A function/transform that takes in a Tensor and returns a transformed version.
This will be applied to the image before it is sent to output

	
on_batch(state)

	

	
target_to_key(key)

	

Model Checkpointers

	
class torchbearer.callbacks.checkpointers.Best(filepath='model.{epoch:02d}-{val_loss:.2f}.pt', save_model_params_only=False, monitor='val_loss', mode='auto', period=1, min_delta=0, pickle_module=<sphinx.ext.autodoc.importer._MockObject object>, pickle_protocol=<sphinx.ext.autodoc.importer._MockObject object>)

	Model checkpointer which saves the best model according to the given configurations.

	Parameters

	
	filepath (str) – Path to save the model file

	save_model_params_only (bool) – If save_model_params_only=True, only model parameters will be saved so that
the results can be loaded into a PyTorch nn.Module. The other option, save_model_params_only=False,
should be used only if the results will be loaded into a Torchbearer Trial object later.

	monitor (str) – Quantity to monitor

	mode (str) – One of {auto, min, max}. If save_best_only=True, the decision to overwrite the current save file
is made based on either the maximization or the minimization of the monitored quantity. For val_acc, this
should be max, for val_loss this should be min, etc. In auto mode, the direction is automatically
inferred from the name of the monitored quantity.

	period (int) – Interval (number of epochs) between checkpoints

	min_delta (float) – If save_best_only=True, this is the minimum improvement required to trigger a save

	pickle_module (module) – The pickle module to use, default is ‘torch.serialization.pickle’

	pickle_protocol (int) – The pickle protocol to use, default is ‘torch.serialization.DEFAULT_PROTOCOL’

	
load_state_dict(state_dict)

	Resume this callback from the given state. Expects that this callback was constructed in the same way.

	Parameters

	state_dict (dict) – The state dict to reload

	Returns

	self

	Return type

	Callback

	
on_checkpoint(state)

	Perform some action with the state after all other callbacks have completed at the end of an epoch and the
history has been updated. Should only be used for taking checkpoints or snapshots and will only be called by the
run method of Trial.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_start(state)

	Perform some action with the given state as context at the start of a model fit.

	Parameters

	state (dict) – The current state dict of the Trial.

	
state_dict()

	Get a dict containing the callback state.

	Returns

	A dict containing parameters and persistent buffers.

	Return type

	dict

	
class torchbearer.callbacks.checkpointers.Interval(filepath='model.{epoch:02d}-{val_loss:.2f}.pt', save_model_params_only=False, period=1, on_batch=False, pickle_module=<sphinx.ext.autodoc.importer._MockObject object>, pickle_protocol=<sphinx.ext.autodoc.importer._MockObject object>)

	Model checkpointer which which saves the model every ‘period’ epochs to the given filepath.

	Parameters

	
	filepath (str) – Path to save the model file

	save_model_params_only (bool) – If save_model_params_only=True, only model parameters will be saved so that
the results can be loaded into a PyTorch nn.Module. The other option, save_model_params_only=False,
should be used only if the results will be loaded into a Torchbearer Trial object later.

	period (int) – Interval (number of steps) between checkpoints

	on_batch (bool) – If true step each batch, if false step each epoch.

	period – Interval (number of epochs) between checkpoints

	pickle_module (module) – The pickle module to use, default is ‘torch.serialization.pickle’

	pickle_protocol (int) – The pickle protocol to use, default is ‘torch.serialization.DEFAULT_PROTOCOL’

	
load_state_dict(state_dict)

	Resume this callback from the given state. Expects that this callback was constructed in the same way.

	Parameters

	state_dict (dict) – The state dict to reload

	Returns

	self

	Return type

	Callback

	
on_checkpoint(state)

	Perform some action with the state after all other callbacks have completed at the end of an epoch and the
history has been updated. Should only be used for taking checkpoints or snapshots and will only be called by the
run method of Trial.

	Parameters

	state (dict) – The current state dict of the Trial.

	
state_dict()

	Get a dict containing the callback state.

	Returns

	A dict containing parameters and persistent buffers.

	Return type

	dict

	
torchbearer.callbacks.checkpointers.ModelCheckpoint(filepath='model.{epoch:02d}-{val_loss:.2f}.pt', save_model_params_only=False, monitor='val_loss', save_best_only=False, mode='auto', period=1, min_delta=0)

	Save the model after every epoch. filepath can contain named formatting options, which will be filled any
values from state. For example: if filepath is weights.{epoch:02d}-{val_loss:.2f}, then the model checkpoints
will be saved with the epoch number and the validation loss in the filename. The torch Trial will be
saved to filename.

	Parameters

	
	filepath (str) – Path to save the model file

	save_model_params_only (bool) – If save_model_params_only=True, only model parameters will be saved so that
the results can be loaded into a PyTorch nn.Module. The other option, save_model_params_only=False,
should be used only if the results will be loaded into a Torchbearer Trial object later.

	monitor (str) – Quantity to monitor

	save_best_only (bool) – If save_best_only=True, the latest best model according to the quantity
monitored will not be overwritten

	mode (str) – One of {auto, min, max}. If save_best_only=True, the decision to overwrite the current
save file is made based on either the maximization or the minimization of the monitored quantity. For
val_acc, this should be max, for val_loss this should be min, etc. In auto mode, the direction is
automatically inferred from the name of the monitored quantity.

	period (int) – Interval (number of epochs) between checkpoints

	min_delta (float) – If save_best_only=True, this is the minimum improvement required to trigger a save

	
class torchbearer.callbacks.checkpointers.MostRecent(filepath='model.{epoch:02d}-{val_loss:.2f}.pt', save_model_params_only=False, pickle_module=<sphinx.ext.autodoc.importer._MockObject object>, pickle_protocol=<sphinx.ext.autodoc.importer._MockObject object>)

	Model checkpointer which saves the most recent model to a given filepath.

	Parameters

	
	filepath (str) – Path to save the model file

	save_model_params_only (bool) – If save_model_params_only=True, only model parameters will be saved so that
the results can be loaded into a PyTorch nn.Module. The other option, save_model_params_only=False,
should be used only if the results will be loaded into a Torchbearer Trial object later.

	pickle_module (module) – The pickle module to use, default is ‘torch.serialization.pickle’

	pickle_protocol (int) – The pickle protocol to use, default is ‘torch.serialization.DEFAULT_PROTOCOL’

	
on_checkpoint(state)

	Perform some action with the state after all other callbacks have completed at the end of an epoch and the
history has been updated. Should only be used for taking checkpoints or snapshots and will only be called by the
run method of Trial.

	Parameters

	state (dict) – The current state dict of the Trial.

Logging

	
class torchbearer.callbacks.csv_logger.CSVLogger(filename, separator=', ', batch_granularity=False, write_header=True, append=False)

	Callback to log metrics to a given csv file.

	Parameters

	
	filename (str) – The name of the file to output to

	separator (str) – The delimiter to use (e.g. comma, tab etc.)

	batch_granularity (bool) – If True, write on each batch, else on each epoch

	write_header (bool) – If True, write the CSV header at the beginning of training

	append (bool) – If True, append to the file instead of replacing it

	
on_end(state)

	Perform some action with the given state as context at the end of the model fitting.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_end_epoch(state)

	Perform some action with the given state as context at the end of each epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_step_training(state)

	Perform some action with the given state as context after step has been called on the optimiser.

	Parameters

	state (dict) – The current state dict of the Trial.

	
class torchbearer.callbacks.printer.ConsolePrinter(validation_label_letter='v', precision=4)

	The ConsolePrinter callback simply outputs the training metrics to the console.

	Parameters

	
	validation_label_letter (str) – This is the letter displayed after the epoch number indicating the current phase
of training

	precision (int) – Precision of the number format in decimal places

	State Requirements:

	
	torchbearer.state.EPOCH: The current epoch number

	torchbearer.state.MAX_EPOCHS: The total number of epochs for this run

	torchbearer.state.BATCH: The current batch / iteration number

	torchbearer.state.STEPS: The total number of steps / batches / iterations for this epoch

	torchbearer.state.METRICS: The metrics dict to print

	
on_end_training(state)

	Perform some action with the given state as context after the training loop has completed.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_end_validation(state)

	Perform some action with the given state as context at the end of the validation loop.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_step_training(state)

	Perform some action with the given state as context after step has been called on the optimiser.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_step_validation(state)

	Perform some action with the given state as context at the end of each validation step.

	Parameters

	state (dict) – The current state dict of the Trial.

	
class torchbearer.callbacks.printer.Tqdm(tqdm_module=None, validation_label_letter='v', precision=4, on_epoch=False, **tqdm_args)

	The Tqdm callback outputs the progress and metrics for training and validation loops to the console using TQDM.
The given key is used to label validation output.

	Parameters

	
	tqdm_module – The tqdm module to use. If none, defaults to tqdm or tqdm_notebook if in notebook

	validation_label_letter (str) – The letter to use for validation outputs.

	precision (int) – Precision of the number format in decimal places

	on_epoch (bool) – If True, output a single progress bar which tracks epochs

	tqdm_args – Any extra keyword args provided here will be passed through to the tqdm module constructor.
See github.com/tqdm/tqdm#parameters [https://github.com/tqdm/tqdm#parameters] for more details.

	State Requirements:

	
	torchbearer.state.EPOCH: The current epoch number

	torchbearer.state.MAX_EPOCHS: The total number of epochs for this run

	torchbearer.state.STEPS: The total number of steps / batches / iterations for this epoch

	torchbearer.state.METRICS: The metrics dict to print

	torchbearer.state.HISTORY: The history of the Trial object

	
on_end(state)

	Perform some action with the given state as context at the end of the model fitting.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_end_epoch(state)

	Perform some action with the given state as context at the end of each epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_end_training(state)

	Update the bar with the terminal training metrics and then close.

	Parameters

	state (dict) – The Trial state

	
on_end_validation(state)

	Update the bar with the terminal validation metrics and then close.

	Parameters

	state (dict) – The Trial state

	
on_start(state)

	Perform some action with the given state as context at the start of a model fit.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_start_training(state)

	Initialise the TQDM bar for this training phase.

	Parameters

	state (dict) – The Trial state

	
on_start_validation(state)

	Initialise the TQDM bar for this validation phase.

	Parameters

	state (dict) – The Trial state

	
on_step_training(state)

	Update the bar with the metrics from this step.

	Parameters

	state (dict) – The Trial state

	
on_step_validation(state)

	Update the bar with the metrics from this step.

	Parameters

	state (dict) – The Trial state

Tensorboard, Visdom and Others

	
class torchbearer.callbacks.tensor_board.AbstractTensorBoard(log_dir='./logs', comment='torchbearer', visdom=False, visdom_params=None)

	TensorBoard callback which writes metrics to the given log directory. Requires the TensorboardX library for python.

	Parameters

	
	log_dir (str) – The tensorboard log path for output

	comment (str) – Descriptive comment to append to path

	visdom (bool) – If true, log to visdom instead of tensorboard

	visdom_params (VisdomParams) – Visdom parameter settings object, uses default if None

	
close_writer(log_dir=None)

	Decrement the reference count for a writer belonging to the given log directory
(or the default writer if the directory is not given). If the reference count gets to zero,
the writer will be closed and removed.

	Parameters

	log_dir (str) – the (optional) directory

	
get_writer(log_dir=None, visdom=False, visdom_params=None)

	Get a SummaryWriter for the given directory (or the default writer if the directory is not given).
If you are getting a SummaryWriter for a custom directory, it is your responsibility to close
it using close_writer.

	Parameters

	
	log_dir (str) – the (optional) directory

	visdom (bool) – If true, return VisdomWriter, if false return tensorboard SummaryWriter

	visdom_params (VisdomParams) – Visdom parameter settings object, uses default if None

	Returns

	the SummaryWriter or VisdomWriter

	
on_end(state)

	Perform some action with the given state as context at the end of the model fitting.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_start(state)

	Perform some action with the given state as context at the start of a model fit.

	Parameters

	state (dict) – The current state dict of the Trial.

	
class torchbearer.callbacks.tensor_board.TensorBoard(log_dir='./logs', write_graph=True, write_batch_metrics=False, batch_step_size=10, write_epoch_metrics=True, comment='torchbearer', visdom=False, visdom_params=None)

	TensorBoard callback which writes metrics to the given log directory. Requires the TensorboardX library for python.

	Parameters

	
	log_dir (str) – The tensorboard log path for output

	write_graph (bool) – If True, the model graph will be written using the TensorboardX library

	write_batch_metrics (bool) – If True, batch metrics will be written

	batch_step_size (int) – The step size to use when writing batch metrics, make this larger to reduce latency

	write_epoch_metrics (bool) – If True, metrics from the end of the epoch will be written

	comment (str) – Descriptive comment to append to path

	visdom (bool) – If true, log to visdom instead of tensorboard

	visdom_params (VisdomParams) – Visdom parameter settings object, uses default if None

	
on_end(state)

	Perform some action with the given state as context at the end of the model fitting.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_end_epoch(state)

	Perform some action with the given state as context at the end of each epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_sample(state)

	Perform some action with the given state as context after data has been sampled from the generator.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_start_epoch(state)

	Perform some action with the given state as context at the start of each epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_step_training(state)

	Perform some action with the given state as context after step has been called on the optimiser.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_step_validation(state)

	Perform some action with the given state as context at the end of each validation step.

	Parameters

	state (dict) – The current state dict of the Trial.

	
class torchbearer.callbacks.tensor_board.TensorBoardImages(log_dir='./logs', comment='torchbearer', name='Image', key=y_pred, write_each_epoch=True, num_images=16, nrow=8, padding=2, normalize=False, norm_range=None, scale_each=False, pad_value=0, visdom=False, visdom_params=None)

	The TensorBoardImages callback will write a selection of images from the validation pass to tensorboard using the
TensorboardX library and torchvision.utils.make_grid (requires torchvision). Images are selected from the given key and saved to the given
path. Full name of image sub directory will be model name + _ + comment.

	Parameters

	
	log_dir (str) – The tensorboard log path for output

	comment (str) – Descriptive comment to append to path

	name (str) – The name of the image

	key (StateKey) – The key in state containing image data (tensor of size [c, w, h] or [b, c, w, h])

	write_each_epoch (bool) – If True, write data on every epoch, else write only for the first epoch.

	num_images (int) – The number of images to write

	nrow – See torchvision.utils.make_grid [https://pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_grid]

	padding – See torchvision.utils.make_grid [https://pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_grid]

	normalize – See torchvision.utils.make_grid [https://pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_grid]

	norm_range – See torchvision.utils.make_grid [https://pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_grid]

	scale_each – See torchvision.utils.make_grid [https://pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_grid]

	pad_value – See torchvision.utils.make_grid [https://pytorch.org/docs/stable/torchvision/utils.html#torchvision.utils.make_grid]

	visdom (bool) – If true, log to visdom instead of tensorboard

	visdom_params (VisdomParams) – Visdom parameter settings object, uses default if None

	
on_end_epoch(state)

	Perform some action with the given state as context at the end of each epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_step_validation(state)

	Perform some action with the given state as context at the end of each validation step.

	Parameters

	state (dict) – The current state dict of the Trial.

	
class torchbearer.callbacks.tensor_board.TensorBoardProjector(log_dir='./logs', comment='torchbearer', num_images=100, avg_pool_size=1, avg_data_channels=True, write_data=True, write_features=True, features_key=y_pred)

	The TensorBoardProjector callback is used to write images from the validation pass to Tensorboard using the
TensorboardX library. Images are written to the given directory and, if required, so are associated features.

	Parameters

	
	log_dir (str) – The tensorboard log path for output

	comment (str) – Descriptive comment to append to path

	num_images (int) – The number of images to write

	avg_pool_size (int) – Size of the average pool to perform on the image. This is recommended to reduce the overall
image sizes and improve latency

	avg_data_channels (bool) – If True, the image data will be averaged in the channel dimension

	write_data (bool) – If True, the raw data will be written as an embedding

	write_features (bool) – If True, the image features will be written as an embedding

	features_key (StateKey) – The key in state to use for the embedding. Typically model output but can be used to show
features from any layer of the model.

	
on_end_epoch(state)

	Perform some action with the given state as context at the end of each epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_step_validation(state)

	Perform some action with the given state as context at the end of each validation step.

	Parameters

	state (dict) – The current state dict of the Trial.

	
class torchbearer.callbacks.tensor_board.TensorBoardText(log_dir='./logs', write_epoch_metrics=True, write_batch_metrics=False, log_trial_summary=True, batch_step_size=100, comment='torchbearer', visdom=False, visdom_params=None)

	TensorBoard callback which writes metrics as text to the given log directory. Requires the TensorboardX library
for python.

	Parameters

	
	log_dir (str) – The tensorboard log path for output

	write_epoch_metrics (bool) – If True, metrics from the end of the epoch will be written

	log_trial_summary (bool) – If True logs a string summary of the Trial

	batch_step_size (int) – The step size to use when writing batch metrics, make this larger to reduce latency

	comment (str) – Descriptive comment to append to path

	visdom (bool) – If true, log to visdom instead of tensorboard

	visdom_params (VisdomParams) – Visdom parameter settings object, uses default if None

	
on_end(state)

	Perform some action with the given state as context at the end of the model fitting.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_end_epoch(state)

	Perform some action with the given state as context at the end of each epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_start(state)

	Perform some action with the given state as context at the start of a model fit.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_start_epoch(state)

	Perform some action with the given state as context at the start of each epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_step_training(state)

	Perform some action with the given state as context after step has been called on the optimiser.

	Parameters

	state (dict) – The current state dict of the Trial.

	
static table_formatter(string)

	

	
class torchbearer.callbacks.tensor_board.VisdomParams

	Class to hold visdom client arguments. Modify member variables before initialising tensorboard callbacks for custom
arguments. See: visdom [https://github.com/facebookresearch/visdom#visdom-arguments-python-only]

	
ENDPOINT = 'events'

	

	
ENV = 'main'

	

	
HTTP_PROXY_HOST = None

	

	
HTTP_PROXY_PORT = None

	

	
IPV6 = True

	

	
LOG_TO_FILENAME = None

	

	
PORT = 8097

	

	
RAISE_EXCEPTIONS = None

	

	
SEND = True

	

	
SERVER = 'http://localhost'

	

	
USE_INCOMING_SOCKET = True

	

	
torchbearer.callbacks.tensor_board.close_writer(log_dir, logger)

	Decrement the reference count for a writer belonging to a specific log directory.
If the reference count gets to zero, the writer will be closed and removed.

	Parameters

	
	log_dir (str) – the log directory

	logger – the object releasing the writer

	
torchbearer.callbacks.tensor_board.get_writer(log_dir, logger, visdom=False, visdom_params=None)

	Get the writer assigned to the given log directory.
If the writer doesn’t exist it will be created, and a reference to the logger added.

	Parameters

	
	log_dir (str) – the log directory

	logger – the object requesting the writer. That object should call close_writer when its finished

	visdom (bool) – if true VisdomWriter is returned instead of tensorboard SummaryWriter

	visdom_params (VisdomParams) – Visdom parameter settings object, uses default if None

	Returns

	the SummaryWriter or VisdomWriter object

	
class torchbearer.callbacks.live_loss_plot.LiveLossPlot(on_batch=False, batch_step_size=10, on_epoch=True, draw_once=False, **kwargs)

	Callback to write metrics to LiveLossPlot [https://github.com/stared/livelossplot], a library for visualisation in notebooks

	Parameters

	
	on_batch (bool) – If True, batch metrics will be logged. Else batch metrics will not be logged

	batch_step_size (int) – The number of batches between logging metrics

	on_epoch (bool) – If True, epoch metrics will be logged every epoch. Else epoch metrics will not be logged

	draw_once (bool) – If True, draw the plot only at the end of training. Else draw every time metrics are logged

	kwargs – Keyword arguments for livelossplot.PlotLosses

	State Requirements:

	
	torchbearer.state.METRICS: Metrics should be a dict containing the metrics to be plotted

	torchbearer.state.BATCH: Batch should be the current batch or iteration number in the epoch

	
on_end(state)

	Perform some action with the given state as context at the end of the model fitting.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_start(state)

	Perform some action with the given state as context at the start of a model fit.

	Parameters

	state (dict) – The current state dict of the Trial.

Early Stopping

	
class torchbearer.callbacks.early_stopping.EarlyStopping(monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto')

	Callback to stop training when a monitored quantity has stopped improving.

	Parameters

	
	monitor (str) – Name of quantity in metrics to be monitored

	min_delta (float) – Minimum change in the monitored quantity to qualify as an improvement, i.e. an absolute
change of less than min_delta, will count as no improvement.

	patience (int) – Number of epochs with no improvement after which training will be stopped.

	verbose (int) – Verbosity mode, will print stopping info if verbose > 0

	mode (str) – One of {auto, min, max}. In min mode, training will stop when the quantity monitored has stopped
decreasing; in max mode it will stop when the quantity monitored has stopped increasing; in auto mode,
the direction is automatically inferred from the name of the monitored quantity.

	State Requirements:

	
	torchbearer.state.METRICS: Metrics should be a dict containing the given monitor key as a minimum

	
load_state_dict(state_dict)

	Resume this callback from the given state. Expects that this callback was constructed in the same way.

	Parameters

	state_dict (dict) – The state dict to reload

	Returns

	self

	Return type

	Callback

	
on_end(state)

	Perform some action with the given state as context at the end of the model fitting.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_end_epoch(state)

	Perform some action with the given state as context at the end of each epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
state_dict()

	Get a dict containing the callback state.

	Returns

	A dict containing parameters and persistent buffers.

	Return type

	dict

	
class torchbearer.callbacks.terminate_on_nan.TerminateOnNaN(monitor='running_loss')

	Callback which montiors the given metric and halts training if its value is nan or inf.

	Parameters

	monitor (str) – The name of the metric to monitor

	State Requirements:

	
	torchbearer.state.METRICS: Metrics should be a dict containing at least the key monitor

	
on_end_epoch(state)

	Perform some action with the given state as context at the end of each epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_step_training(state)

	Perform some action with the given state as context after step has been called on the optimiser.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_step_validation(state)

	Perform some action with the given state as context at the end of each validation step.

	Parameters

	state (dict) – The current state dict of the Trial.

Gradient Clipping

	
class torchbearer.callbacks.gradient_clipping.GradientClipping(clip_value, params=None)

	GradientClipping callback, which uses ‘torch.nn.utils.clip_grad_value_’ to clip the gradients of the given
parameters to the given value. If params is None they will be retrieved from state.

	Parameters

	
	clip_value (float or int) – maximum allowed value of the gradients
The gradients are clipped in the range [-clip_value, clip_value]

	params (Iterable[Tensor] or Tensor, optional) – an iterable of Tensors or a
single Tensor that will have gradients normalized, otherwise this is retrieved from state

	State Requirements:

	
	torchbearer.state.MODEL: Model should have the parameters method

	
on_backward(state)

	Between the backward pass (which computes the gradients) and the step call (which updates the parameters),
clip the gradient.

	Parameters

	state (dict) – The Trial state

	
on_start(state)

	If params is None then retrieve from the model.

	Parameters

	state (dict) – The Trial state

	
class torchbearer.callbacks.gradient_clipping.GradientNormClipping(max_norm, norm_type=2, params=None)

	GradientNormClipping callback, which uses ‘torch.nn.utils.clip_grad_norm_’ to clip the gradient norms to the
given value. If params is None they will be retrieved from state.

	Parameters

	
	max_norm (float or int) – max norm of the gradients

	norm_type (float or int) – type of the used p-norm. Can be 'inf' for
infinity norm.

	params (Iterable[Tensor] or Tensor, optional) – an iterable of Tensors or a
single Tensor that will have gradients normalized, otherwise this is retrieved from state

	State Requirements:

	
	torchbearer.state.MODEL: Model should have the parameters method

	
on_backward(state)

	Between the backward pass (which computes the gradients) and the step call (which updates the parameters),
clip the gradient.

	Parameters

	state (dict) – The Trial state

	
on_start(state)

	If params is None then retrieve from the model.

	Parameters

	state (dict) – The Trial state

Learning Rate Schedulers

	
class torchbearer.callbacks.torch_scheduler.CosineAnnealingLR(T_max, eta_min=0, last_epoch=-1, step_on_batch=False)

	
	Parameters

	step_on_batch (bool) – If True, step will be called on each training iteration rather than on each epoch

	See:

	PyTorch CosineAnnealingLR [http://pytorch.org/docs/master/optim.html#torch.optim.lr_scheduler.CosineAnnealingLR]

	
class torchbearer.callbacks.torch_scheduler.ExponentialLR(gamma, last_epoch=-1, step_on_batch=False)

	
	Parameters

	step_on_batch (bool) – If True, step will be called on each training iteration rather than on each epoch

	See:

	PyTorch ExponentialLR [http://pytorch.org/docs/master/optim.html#torch.optim.lr_scheduler.ExponentialLR]

	
class torchbearer.callbacks.torch_scheduler.LambdaLR(lr_lambda, last_epoch=-1, step_on_batch=False)

	
	Parameters

	step_on_batch (bool) – If True, step will be called on each training iteration rather than on each epoch

	See:

	PyTorch LambdaLR [http://pytorch.org/docs/master/optim.html#torch.optim.lr_scheduler.LambdaLR]

	
class torchbearer.callbacks.torch_scheduler.MultiStepLR(milestones, gamma=0.1, last_epoch=-1, step_on_batch=False)

	
	Parameters

	step_on_batch (bool) – If True, step will be called on each training iteration rather than on each epoch

	See:

	PyTorch MultiStepLR [http://pytorch.org/docs/master/optim.html#torch.optim.lr_scheduler.MultiStepLR]

	
class torchbearer.callbacks.torch_scheduler.ReduceLROnPlateau(monitor='val_loss', mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08, step_on_batch=False)

	
	Parameters

	
	monitor (str) – The name of the quantity in metrics to monitor. (Default value = ‘val_loss’)

	step_on_batch (bool) – If True, step will be called on each training iteration rather than on each epoch

	See:

	PyTorch ReduceLROnPlateau [http://pytorch.org/docs/master/optim.html#torch.optim.lr_scheduler.ReduceLROnPlateau]

	
class torchbearer.callbacks.torch_scheduler.StepLR(step_size, gamma=0.1, last_epoch=-1, step_on_batch=False)

	
	Parameters

	step_on_batch (bool) – If True, step will be called on each training iteration rather than on each epoch

	See:

	PyTorch StepLR [http://pytorch.org/docs/master/optim.html#torch.optim.lr_scheduler.StepLR]

	
class torchbearer.callbacks.torch_scheduler.TorchScheduler(scheduler_builder, monitor=None, step_on_batch=False)

	
	
on_end_epoch(state)

	Perform some action with the given state as context at the end of each epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_sample(state)

	Perform some action with the given state as context after data has been sampled from the generator.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_start(state)

	Perform some action with the given state as context at the start of a model fit.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_start_training(state)

	Perform some action with the given state as context at the start of the training loop.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_step_training(state)

	Perform some action with the given state as context after step has been called on the optimiser.

	Parameters

	state (dict) – The current state dict of the Trial.

Learning Rate Finders

	
class torchbearer.callbacks.lr_finder.CyclicLR(base_lr=0.001, max_lr=0.006, step_size=2000, mode='triangular', scale_fn=None, scale_mode='cycle', gamma=1.0)

	Learning rate finder that cyclicly varies the rate. Based off of the keras implementation referenced in the paper [https://arxiv.org/abs/1506.01186].

@inproceedings{smith2017cyclical,
 title={Cyclical learning rates for training neural networks},
 author={Smith, Leslie N},
 booktitle={2017 IEEE Winter Conference on Applications of Computer Vision (WACV)},
 pages={464--472},
 year={2017},
 organization={IEEE}
}

	Parameters

	
	base_lr (float / list) – Float or list of floats for the base (min) learning rate for each optimiser parameter group

	max_lr (float / list) – Float or list of floats for the max learning rate for each optimiser parameter group

	step_size (int / list) – int or list of ints for the step size (half cyclic period) for each optimiser parameter group

	mode (str) – One of (triangular, triangular2, exp_range) - the mode to use

	scale_fn (function) – Scale function for learning rates over time. Default is defined by mode.

	scale_mode (str) – One of (cycle, iterations). Argument passed to the scale function each step

	gamma (float) – Scaling factor for exp_range mode

	
next_lr(epoch_count, group_id)

	

	
on_sample(state)

	Perform some action with the given state as context after data has been sampled from the generator.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_start(state)

	Perform some action with the given state as context at the start of a model fit.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_step_training(state)

	Perform some action with the given state as context after step has been called on the optimiser.

	Parameters

	state (dict) – The current state dict of the Trial.

	
update_lrs()

	

Weight Decay

	
class torchbearer.callbacks.weight_decay.L1WeightDecay(rate=0.0005, params=None)

	WeightDecay callback which uses an L1 norm with the given rate and parameters. If params is None (default) then
the parameters will be retrieved from the model.

	Parameters

	
	rate (float) – The decay rate or lambda

	params (Iterable[Tensor] or Tensor, optional) – an iterable of Tensors or a
single Tensor that will have gradients normalized, otherwise this is retrieved from state

	State Requirements:

	
	torchbearer.state.MODEL: Model should have the parameters method

	torchbearer.state.LOSS: Loss should be a tensor that can be incremented

	
class torchbearer.callbacks.weight_decay.L2WeightDecay(rate=0.0005, params=None)

	WeightDecay callback which uses an L2 norm with the given rate and parameters. If params is None (default) then
the parameters will be retrieved from the model.

	Parameters

	
	rate (float) – The decay rate or lambda

	params (Iterable[Tensor] or Tensor, optional) – an iterable of Tensors or a
single Tensor that will have gradients normalized, otherwise this is retrieved from state

	State Requirements:

	
	torchbearer.state.MODEL: Model should have the parameters method

	torchbearer.state.LOSS: Loss should be a tensor that can be incremented

	
class torchbearer.callbacks.weight_decay.WeightDecay(rate=0.0005, p=2, params=None)

	Create a WeightDecay callback which uses the given norm on the given parameters and with the given decay rate.
If params is None (default) then the parameters will be retrieved from the model.

	Parameters

	
	rate (float) – The decay rate or lambda

	p (int) – The norm level

	params (Iterable[Tensor] or Tensor, optional) – an iterable of Tensors or a
single Tensor that will have gradients normalized, otherwise this is retrieved from state

	State Requirements:

	
	torchbearer.state.MODEL: Model should have the parameters method

	torchbearer.state.LOSS: Loss should be a tensor that can be incremented

	
on_criterion(state)

	Calculate the decay term and add to state[‘loss’].

	Parameters

	state (dict) – The Trial state

	
on_start(state)

	Retrieve params from state[‘model’] if required.

	Parameters

	state (dict) – The Trial state

Weight / Bias Initialisation

	
class torchbearer.callbacks.init.KaimingNormal(a=0, mode='fan_in', nonlinearity='leaky_relu', modules=None, targets=['Conv', 'Linear', 'Bilinear'])

	Kaiming Normal weight initialisation. Uses torch.nn.init.kaiming_normal_ on the weight attribute of the
filtered modules.

@inproceedings{he2015delving,
 title={Delving deep into rectifiers: Surpassing human-level performance on imagenet classification},
 author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
 booktitle={Proceedings of the IEEE international conference on computer vision},
 pages={1026--1034},
 year={2015}
}

	Parameters

	
	modules (Iterable[nn.Module] or nn.Module, optional) – an iterable of nn.Modules or a
single nn.Module that will have weights initialised, otherwise this is retrieved from the model

	targets (list[String]) – A list of lookup strings to match which modules will be initialised

	See:

	PyTorch kaiming_normal_ [https://pytorch.org/docs/stable/nn.html#torch.nn.init.kaiming_normal_]

	
class torchbearer.callbacks.init.KaimingUniform(a=0, mode='fan_in', nonlinearity='leaky_relu', modules=None, targets=['Conv', 'Linear', 'Bilinear'])

	Kaiming Uniform weight initialisation. Uses torch.nn.init.kaiming_uniform_ on the weight attribute of the
filtered modules.

@inproceedings{he2015delving,
 title={Delving deep into rectifiers: Surpassing human-level performance on imagenet classification},
 author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
 booktitle={Proceedings of the IEEE international conference on computer vision},
 pages={1026--1034},
 year={2015}
}

	Parameters

	
	modules (Iterable[nn.Module] or nn.Module, optional) – an iterable of nn.Modules or a
single nn.Module that will have weights initialised, otherwise this is retrieved from the model

	targets (list[String]) – A list of lookup strings to match which modules will be initialised

	See:

	PyTorch kaiming_uniform_ [https://pytorch.org/docs/stable/nn.html#torch.nn.init.kaiming_uniform_]

	
class torchbearer.callbacks.init.LsuvInit(data_item, weight_lambda=None, needed_std=1.0, std_tol=0.1, max_attempts=10, do_orthonorm=True)

	Layer-sequential unit-variance (LSUV) initialization as described in
All you need is a good init [https://arxiv.org/abs/1511.06422] and
modified from the code by ducha-aiki [https://github.com/ducha-aiki/LSUV-pytorch].
To be consistent with the paper, LsuvInit should be preceeded by a ZeroBias init on the Linear and Conv layers.

@article{mishkin2015all,
 title={All you need is a good init},
 author={Mishkin, Dmytro and Matas, Jiri},
 journal={arXiv preprint arXiv:1511.06422},
 year={2015}
}

	Parameters

	
	data_item (torch.Tensor) – A representative data item to put through the model

	weight_lambda (lambda) – A function that takes a module and returns the weight attribute. If none defaults to
module.weight.

	needed_std – See paper [https://arxiv.org/abs/1511.06422], where needed_std is always 1.0

	std_tol – See paper [https://arxiv.org/abs/1511.06422], Tol_{var}

	max_attempts – See paper [https://arxiv.org/abs/1511.06422], T_{max}

	do_orthonorm – See paper [https://arxiv.org/abs/1511.06422], first pre-initialise with orthonormal matricies

	State Requirements:

	
	torchbearer.state.MODEL: Model should have the modules method if modules is None

	
on_init(state)

	Perform some action with the given state as context at the init of a trial instance

	Parameters

	state (dict) – The current state dict of the Trial.

	
class torchbearer.callbacks.init.WeightInit(initialiser=<function WeightInit.<lambda>>, modules=None, targets=['Conv', 'Linear', 'Bilinear'])

	Base class for weight initialisations. Performs the provided function for each module when on_init is
called.

	Parameters

	
	initialiser (lambda) – a function which initialises an nn.Module inplace

	modules (Iterable[nn.Module] or nn.Module, optional) – an iterable of nn.Modules or a
single nn.Module that will have weights initialised, otherwise this is retrieved from the model

	targets (list[String]) – A list of lookup strings to match which modules will be initialised

	State Requirements:

	
	torchbearer.state.MODEL: Model should have the modules method if modules is None

	
on_init(state)

	Perform some action with the given state as context at the init of a trial instance

	Parameters

	state (dict) – The current state dict of the Trial.

	
class torchbearer.callbacks.init.XavierNormal(gain=1, modules=None, targets=['Conv', 'Linear', 'Bilinear'])

	Xavier Normal weight initialisation. Uses torch.nn.init.xavier_normal_ on the weight attribute of the
filtered modules.

@inproceedings{glorot2010understanding,
 title={Understanding the difficulty of training deep feedforward neural networks},
 author={Glorot, Xavier and Bengio, Yoshua},
 booktitle={Proceedings of the thirteenth international conference on artificial intelligence and statistics},
 pages={249--256},
 year={2010}
}

	Parameters

	
	modules (Iterable[nn.Module] or nn.Module, optional) – an iterable of nn.Modules or a
single nn.Module that will have weights initialised, otherwise this is retrieved from the model

	targets (list[String]) – A list of lookup strings to match which modules will be initialised

	See:

	PyTorch xavier_normal_ [https://pytorch.org/docs/stable/nn.html#torch.nn.init.xavier_normal_]

	
class torchbearer.callbacks.init.XavierUniform(gain=1, modules=None, targets=['Conv', 'Linear', 'Bilinear'])

	Xavier Uniform weight initialisation. Uses torch.nn.init.xavier_uniform_ on the weight attribute of the
filtered modules.

@inproceedings{glorot2010understanding,
 title={Understanding the difficulty of training deep feedforward neural networks},
 author={Glorot, Xavier and Bengio, Yoshua},
 booktitle={Proceedings of the thirteenth international conference on artificial intelligence and statistics},
 pages={249--256},
 year={2010}
}

	Parameters

	
	modules (Iterable[nn.Module] or nn.Module, optional) – an iterable of nn.Modules or a
single nn.Module that will have weights initialised, otherwise this is retrieved from the model

	targets (list[String]) – A list of lookup strings to match which modules will be initialised

	See:

	PyTorch xavier_uniform_ [https://pytorch.org/docs/stable/nn.html#torch.nn.init.xavier_uniform_]

	
class torchbearer.callbacks.init.ZeroBias(modules=None, targets=['Conv', 'Linear', 'Bilinear'])

	Zero initialisation for the bias attributes of filtered modules. This is recommended for use in conjunction
with weight initialisation schemes.

	Parameters

	
	modules (Iterable[nn.Module] or nn.Module, optional) – an iterable of nn.Modules or a
single nn.Module that will have weights initialised, otherwise this is retrieved from the model

	targets (list[String]) – A list of lookup strings to match which modules will be initialised

Decorators

	
class torchbearer.callbacks.decorators.LambdaCallback(func)

	
	
on_lambda(state)

	

	
torchbearer.callbacks.decorators.add_to_loss(func)

	The add_to_loss() decorator is used to initialise a Callback with the value returned from func
being added to the loss

	Parameters

	func (function) – The function(state) to decorate

	Returns

	Initialised callback which adds the returned value from func to the loss

	Return type

	Callback

	
torchbearer.callbacks.decorators.bind_to(target)

	

	
torchbearer.callbacks.decorators.count_args(fcn)

	

	
torchbearer.callbacks.decorators.on_backward(func)

	The on_backward() decorator is used to initialise a Callback with on_backward()
calling the decorated function

	Parameters

	func (function) – The function(state) to decorate

	Returns

	Initialised callback with on_backward() calling func

	Return type

	Callback

	
torchbearer.callbacks.decorators.on_checkpoint(func)

	The on_checkpoint() decorator is used to initialise a Callback with on_checkpoint()
calling the decorated function

	Parameters

	func (function) – The function(state) to decorate

	Returns

	Initialised callback with on_checkpoint() calling func

	Return type

	Callback

	
torchbearer.callbacks.decorators.on_criterion(func)

	The on_criterion() decorator is used to initialise a Callback with on_criterion()
calling the decorated function

	Parameters

	func (function) – The function(state) to decorate

	Returns

	Initialised callback with on_criterion() calling func

	Return type

	Callback

	
torchbearer.callbacks.decorators.on_criterion_validation(func)

	The on_criterion_validation() decorator is used to initialise a Callback with on_criterion_validation()
calling the decorated function

	Parameters

	func (function) – The function(state) to decorate

	Returns

	Initialised callback with on_criterion_validation() calling func

	Return type

	Callback

	
torchbearer.callbacks.decorators.on_end(func)

	The on_end() decorator is used to initialise a Callback with on_end()
calling the decorated function

	Parameters

	func (function) – The function(state) to decorate

	Returns

	Initialised callback with on_end() calling func

	Return type

	Callback

	
torchbearer.callbacks.decorators.on_end_epoch(func)

	The on_end_epoch() decorator is used to initialise a Callback with on_end_epoch()
calling the decorated function

	Parameters

	func (function) – The function(state) to decorate

	Returns

	Initialised callback with on_end_epoch() calling func

	Return type

	Callback

	
torchbearer.callbacks.decorators.on_end_training(func)

	The on_end_training() decorator is used to initialise a Callback with on_end_training()
calling the decorated function

	Parameters

	func (function) – The function(state) to decorate

	Returns

	Initialised callback with on_end_training() calling func

	Return type

	Callback

	
torchbearer.callbacks.decorators.on_end_validation(func)

	The on_end_validation() decorator is used to initialise a Callback with on_end_validation()
calling the decorated function

	Parameters

	func (function) – The function(state) to decorate

	Returns

	Initialised callback with on_end_validation() calling func

	Return type

	Callback

	
torchbearer.callbacks.decorators.on_forward(func)

	The on_forward() decorator is used to initialise a Callback with on_forward()
calling the decorated function

	Parameters

	func (function) – The function(state) to decorate

	Returns

	Initialised callback with on_forward() calling func

	Return type

	Callback

	
torchbearer.callbacks.decorators.on_forward_validation(func)

	The on_forward_validation() decorator is used to initialise a Callback with on_forward_validation()
calling the decorated function

	Parameters

	func (function) – The function(state) to decorate

	Returns

	Initialised callback with on_forward_validation() calling func

	Return type

	Callback

	
torchbearer.callbacks.decorators.on_sample(func)

	The on_sample() decorator is used to initialise a Callback with on_sample()
calling the decorated function

	Parameters

	func (function) – The function(state) to decorate

	Returns

	Initialised callback with on_sample() calling func

	Return type

	Callback

	
torchbearer.callbacks.decorators.on_sample_validation(func)

	The on_sample_validation() decorator is used to initialise a Callback with on_sample_validation()
calling the decorated function

	Parameters

	func (function) – The function(state) to decorate

	Returns

	Initialised callback with on_sample_validation() calling func

	Return type

	Callback

	
torchbearer.callbacks.decorators.on_start(func)

	The on_start() decorator is used to initialise a Callback with on_start()
calling the decorated function

	Parameters

	func (function) – The function(state) to decorate

	Returns

	Initialised callback with on_start() calling func

	Return type

	Callback

	
torchbearer.callbacks.decorators.on_start_epoch(func)

	The on_start_epoch() decorator is used to initialise a Callback with
on_start_epoch() calling the decorated function

Args:
func (function): The function(state) to decorate

	Returns

	Initialised callback with on_start_epoch() calling func

	Return type

	Callback

	
torchbearer.callbacks.decorators.on_start_training(func)

	The on_start_training() decorator is used to initialise a Callback with on_start_training()
calling the decorated function

	Parameters

	func (function) – The function(state) to decorate

	Returns

	Initialised callback with on_start_training() calling func

	Return type

	Callback

	
torchbearer.callbacks.decorators.on_start_validation(func)

	The on_start_validation() decorator is used to initialise a Callback with on_start_validation()
calling the decorated function

	Parameters

	func (function) – The function(state) to decorate

	Returns

	Initialised callback with on_start_validation() calling func

	Return type

	Callback

	
torchbearer.callbacks.decorators.on_step_training(func)

	The on_step_training() decorator is used to initialise a Callback with on_step_training()
calling the decorated function

	Parameters

	func (function) – The function(state) to decorate

	Returns

	Initialised callback with on_step_training() calling func

	Return type

	Callback

	
torchbearer.callbacks.decorators.on_step_validation(func)

	The on_step_validation() decorator is used to initialise a Callback with on_step_validation()
calling the decorated function

	Parameters

	func (function) – The function(state) to decorate

	Returns

	Initialised callback with on_step_validation() calling func

	Return type

	Callback

	
torchbearer.callbacks.decorators.once(fcn)

	Decorator to fire a callback once in the lifetime of the callback. If the callback is a class method, each
instance of the class will fire only once. For functions, only the first instance will fire (even if more than
one function is present in the callback list).

	Parameters

	fcn (function) – the torchbearer callback function to decorate.

	Returns

	the decorator

	
torchbearer.callbacks.decorators.once_per_epoch(fcn)

	Decorator to fire a callback once (on the first call) in any given epoch. If the callback is a class method, each
instance of the class will fire once per epoch. For functions, only the first instance will fire (even if more than
one function is present in the callback list).

Note

The decorated callback may exhibit unusual behaviour if it is reused

	Parameters

	fcn (function) – the torchbearer callback function to decorate.

	Returns

	the decorator

	
torchbearer.callbacks.decorators.only_if(condition_expr)

	Decorator to fire a callback only if the given conditional expression function returns True. The conditional
expression can be a function of state or self and state. If the decorated function is not a class method (i.e. it
does not take state) the decorated function will be passed instead. This enables the storing of temporary variables.

	Parameters

	condition_expr (function(self, state) or function(self)) – a function/lambda which takes state and optionally self that must evaluate to true for the decorated torchbearer callback to be called. The state object passed to the callback will be passed as an argument to the condition function.

	Returns

	the decorator

torchbearer.metrics

Base Classes

The base metric classes exist to enable complex data flow requirements between metrics. All metrics are either instances
of Metric or MetricFactory. These can then be collected in a MetricList or a
MetricTree. The MetricList simply aggregates calls from a list of metrics, whereas the
MetricTree will pass data from its root metric to each child and collect the outputs. This enables complex
running metrics and statistics, without needing to compute the underlying values more than once. Typically,
constructions of this kind should be handled using the decorator API.

	
class torchbearer.bases.Metric(name)

	Base metric class. Process will be called on each batch, process-final at the end of each epoch.
The metric contract allows for metrics to take any args but not kwargs. The initial metric call will be given state,
however, subsequent metrics can pass any values desired.

Note

All metrics must extend this class.

	Parameters

	name (str) – The name of the metric

	
eval(data_key=None)

	Put the metric in eval mode during model validation.

	
process(*args)

	Process the state and update the metric for one iteration.

	Parameters

	args – Arguments given to the metric. If this is a root level metric, will be given state

	Returns

	None, or the value of the metric for this batch

	
process_final(*args)

	Process the terminal state and output the final value of the metric.

	Parameters

	args – Arguments given to the metric. If this is a root level metric, will be given state

	Returns

	None or the value of the metric for this epoch

	
reset(state)

	Reset the metric, called before the start of an epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
train()

	Put the metric in train mode during model training.

	
class torchbearer.metrics.metrics.AdvancedMetric(name)

	The AdvancedMetric class is a metric which provides different process methods for training and
validation. This enables running metrics which do not output intermediate steps during validation.

	Parameters

	name (str) – The name of the metric.

	
eval(data_key=None)

	Put the metric in eval mode.

	Parameters

	data_key (StateKey) – The torchbearer data_key, if used

	
process(*args)

	Depending on the current mode, return the result of either ‘process_train’ or ‘process_validate’.

	Returns

	The metric value.

	
process_final(*args)

	Depending on the current mode, return the result of either ‘process_final_train’ or ‘process_final_validate’.

	Returns

	The final metric value.

	
process_final_train(*args)

	Process the given state and return the final metric value for a training iteration.

	Returns

	The final metric value for a training iteration.

	
process_final_validate(*args)

	Process the given state and return the final metric value for a validation iteration.

	Returns

	The final metric value for a validation iteration.

	
process_train(*args)

	Process the given state and return the metric value for a training iteration.

	Returns

	The metric value for a training iteration.

	
process_validate(*args)

	Process the given state and return the metric value for a validation iteration.

	Returns

	The metric value for a validation iteration.

	
train()

	Put the metric in train mode.

	
class torchbearer.metrics.metrics.MetricList(metric_list)

	The MetricList class is a wrapper for a list of metrics which acts as a single metric and produces a
dictionary of outputs.

	Parameters

	metric_list (list) – The list of metrics to be wrapped. If the list contains a MetricList, this will be
unwrapped. Any strings in the list will be retrieved from metrics.DEFAULT_METRICS.

	
eval(data_key=None)

	Put each metric in eval mode

	
process(*args)

	Process each metric an wrap in a dictionary which maps metric names to values.

	Returns

	A dictionary which maps metric names to values.

	Return type

	dict[str,any]

	
process_final(*args)

	Process each metric an wrap in a dictionary which maps metric names to values.

	Returns

	A dictionary which maps metric names to values.

	Return type

	dict[str,any]

	
reset(state)

	Reset each metric with the given state.

	Parameters

	state – The current state dict of the Trial.

	
train()

	Put each metric in train mode.

	
class torchbearer.metrics.metrics.MetricTree(metric)

	A tree structure which has a node Metric and some children. Upon execution, the node is called with the
input and its output is passed to each of the children. A dict is updated with the results.

Note

If the node output is already a dict (i.e. the node is a standalone metric), this is unwrapped before passing the
first value to the children.

	Parameters

	metric (Metric) – The metric to act as the root node of the tree / subtree

	
add_child(child)

	Add a child to this node of the tree

	Parameters

	child (Metric) – The child to add

	
eval(data_key=None)

	Put the metric in eval mode during model validation.

	
process(*args)

	Process this node and then pass the output to each child.

	Returns

	A dict containing all results from the children

	
process_final(*args)

	Process this node and then pass the output to each child.

	Returns

	A dict containing all results from the children

	
reset(state)

	Reset the metric, called before the start of an epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
train()

	Put the metric in train mode during model training.

	
torchbearer.metrics.metrics.add_default(key, metric, *args, **kwargs)

	

	
torchbearer.metrics.metrics.get_default(key)

	

Decorators - The Decorator API

The decorator API is the core way to interact with metrics in torchbearer. All of the classes and functionality handled
here can be reproduced by manually interacting with the classes if necessary. Broadly speaking, the decorator API is
used to construct a MetricFactory which will build a MetricTree that handles data flow between
instances of Mean, RunningMean, Std etc.

	
torchbearer.metrics.decorators.default_for_key(key, *args, **kwargs)

	The default_for_key() decorator will register the given metric in the global metric dict
(metrics.DEFAULT_METRICS) so that it can be referenced by name in instances of MetricList such as in the
list given to the torchbearer.Model.

Example:

@default_for_key('acc')
class CategoricalAccuracy(metrics.BatchLambda):
 ...

	Parameters

	
	key (str) – The key to use when referencing the metric

	args – Any args to pass to the underlying metric when constructed

	kwargs – Any keyword args to pass to the underlying metric when constructed

	
torchbearer.metrics.decorators.lambda_metric(name, on_epoch=False)

	The lambda_metric() decorator is used to convert a lambda function y_pred, y_true into a Metric
instance. This can be used as in the following example:

@metrics.lambda_metric('my_metric')
def my_metric(y_pred, y_true):
 ... # Calculate some metric

model = Model(metrics=[my_metric])

	Parameters

	
	name (str) – The name of the metric (e.g. ‘loss’)

	on_epoch (bool) – If True the metric will be an instance of EpochLambda instead of BatchLambda

	Returns

	A decorator which replaces a function with a Metric

	
torchbearer.metrics.decorators.mean(clazz=None, dim=None)

	The mean() decorator is used to add a Mean to the MetricTree which will will output a
mean value at the end of each epoch. At build time, if the inner class is not a MetricTree, one will be
created. The Mean will also be wrapped in a ToDict for simplicity.

Example:

>>> import torch
>>> from torchbearer import metrics

>>> @metrics.mean
... @metrics.lambda_metric('my_metric')
... def metric(y_pred, y_true):
... return y_pred + y_true
...
>>> metric.reset({})
>>> metric.process({'y_pred':torch.Tensor([2]), 'y_true':torch.Tensor([2])}) # 4
{}
>>> metric.process({'y_pred':torch.Tensor([3]), 'y_true':torch.Tensor([3])}) # 6
{}
>>> metric.process({'y_pred':torch.Tensor([4]), 'y_true':torch.Tensor([4])}) # 8
{}
>>> metric.process_final()
{'my_metric': 6.0}

	Parameters

	
	clazz – The class to decorate

	dim (int, tuple) – See Mean

	Returns

	A MetricTree with a Mean appended or a wrapper class that extends MetricTree

	
torchbearer.metrics.decorators.running_mean(clazz=None, batch_size=50, step_size=10, dim=None)

	The running_mean() decorator is used to add a RunningMean to the MetricTree. If the
inner class is not a MetricTree then one will be created. The RunningMean will be wrapped in a
ToDict (with ‘running_’ prepended to the name) for simplicity.

Note

The decorator function does not need to be called if not desired, both: @running_mean and @running_mean()
are acceptable.

Example:

>>> import torch
>>> from torchbearer import metrics

>>> @metrics.running_mean(step_size=2) # Update every 2 steps
... @metrics.lambda_metric('my_metric')
... def metric(y_pred, y_true):
... return y_pred + y_true
...
>>> metric.reset({})
>>> metric.process({'y_pred':torch.Tensor([2]), 'y_true':torch.Tensor([2])}) # 4
{'running_my_metric': 4.0}
>>> metric.process({'y_pred':torch.Tensor([3]), 'y_true':torch.Tensor([3])}) # 6
{'running_my_metric': 4.0}
>>> metric.process({'y_pred':torch.Tensor([4]), 'y_true':torch.Tensor([4])}) # 8, triggers update
{'running_my_metric': 6.0}

	Parameters

	
	clazz – The class to decorate

	batch_size (int) – See RunningMean

	step_size (int) – See RunningMean

	dim (int, tuple) – See RunningMean

	Returns

	decorator or MetricTree instance or wrapper

	
torchbearer.metrics.decorators.std(clazz=None, unbiased=True, dim=None)

	The std() decorator is used to add a Std to the MetricTree which will will output a
sample standard deviation value at the end of each epoch. At build time, if the inner class is not a
MetricTree, one will be created. The Std will also be wrapped in a ToDict (with ‘_std’
appended) for simplicity.

Example:

>>> import torch
>>> from torchbearer import metrics

>>> @metrics.std
... @metrics.lambda_metric('my_metric')
... def metric(y_pred, y_true):
... return y_pred + y_true
...
>>> metric.reset({})
>>> metric.process({'y_pred':torch.Tensor([2]), 'y_true':torch.Tensor([2])}) # 4
{}
>>> metric.process({'y_pred':torch.Tensor([3]), 'y_true':torch.Tensor([3])}) # 6
{}
>>> metric.process({'y_pred':torch.Tensor([4]), 'y_true':torch.Tensor([4])}) # 8
{}
>>> '%.4f' % metric.process_final()['my_metric_std']
'2.0000'

	Parameters

	
	clazz – The class to decorate

	unbiased (bool) – See Std

	dim (int, tuple) – See Std

	Returns

	A MetricTree with a Std appended or a wrapper class that extends MetricTree

	
torchbearer.metrics.decorators.to_dict(clazz)

	The to_dict() decorator is used to wrap either a Metric class or a Metric instance with
a ToDict instance. The result is that future output will be wrapped in a dict[name, value].

Example:

>>> from torchbearer import metrics

>>> @metrics.lambda_metric('my_metric')
... def my_metric(y_pred, y_true):
... return y_pred + y_true
...
>>> my_metric.process({'y_pred':4, 'y_true':5})
9

>>> @metrics.to_dict
... @metrics.lambda_metric('my_metric')
... def my_metric(y_pred, y_true):
... return y_pred + y_true
...
>>> my_metric.process({'y_pred':4, 'y_true':5})
{'my_metric': 9}

	Parameters

	clazz – The class to decorate

	Returns

	A ToDict instance or a ToDict wrapper of the given class

	
torchbearer.metrics.decorators.var(clazz=None, unbiased=True, dim=None)

	The var() decorator is used to add a Var to the MetricTree which will will output a
sample variance value at the end of each epoch. At build time, if the inner class is not a MetricTree, one
will be created. The Var will also be wrapped in a ToDict (with ‘_var’ appended) for simplicity.

Example:

>>> import torch
>>> from torchbearer import metrics

>>> @metrics.var
... @metrics.lambda_metric('my_metric')
... def metric(y_pred, y_true):
... return y_pred + y_true
...
>>> metric.reset({})
>>> metric.process({'y_pred':torch.Tensor([2]), 'y_true':torch.Tensor([2])}) # 4
{}
>>> metric.process({'y_pred':torch.Tensor([3]), 'y_true':torch.Tensor([3])}) # 6
{}
>>> metric.process({'y_pred':torch.Tensor([4]), 'y_true':torch.Tensor([4])}) # 8
{}
>>> '%.4f' % metric.process_final()['my_metric_var']
'4.0000'

	Parameters

	
	clazz – The class to decorate

	unbiased (bool) – See Var

	dim (int, tuple) – See Var

	Returns

	A MetricTree with a Var appended or a wrapper class that extends MetricTree

Metric Wrappers

Metric wrappers are classes which wrap instances of Metric or, in the case of EpochLambda and
BatchLambda, functions. Typically, these should not be used directly (although this is entirely possible),
but via the decorator API.

	
class torchbearer.metrics.wrappers.BatchLambda(name, metric_function)

	A metric which returns the output of the given function on each batch.

	Parameters

	
	name (str) – The name of the metric.

	metric_function (func) – A metric function(‘y_pred’, ‘y_true’) to wrap.

	
process(*args)

	Return the output of the wrapped function.

	Parameters

	args – The torchbearer.Trial state.

	Returns

	The value of the metric function(‘y_pred’, ‘y_true’).

	
class torchbearer.metrics.wrappers.EpochLambda(name, metric_function, running=True, step_size=50)

	A metric wrapper which computes the given function for concatenated values of ‘y_true’ and ‘y_pred’ each epoch.
Can be used as a running metric which computes the function for batches of outputs with a given step size during
training.

	Parameters

	
	name (str) – The name of the metric.

	metric_function (func) – The function(‘y_pred’, ‘y_true’) to use as the metric.

	running (bool) – True if this should act as a running metric.

	step_size (int) – Step size to use between calls if running=True.

	
process_final_train(*args)

	Evaluate the function with the aggregated outputs.

	Returns

	The result of the function.

	
process_final_validate(*args)

	Evaluate the function with the aggregated outputs.

	Returns

	The result of the function.

	
process_train(*args)

	Concatenate the ‘y_true’ and ‘y_pred’ from the state along the 0 dimension, this must be the batch dimension.
If this is a running metric, evaluates the function every number of steps.

	Parameters

	args – The torchbearer.Trial state.

	Returns

	The current running result.

	
process_validate(*args)

	During validation, just concatenate ‘y_true’ and y_pred’.

	Parameters

	args – The torchbearer.Trial state.

	
reset(state)

	Reset the ‘y_true’ and ‘y_pred’ caches.

	Parameters

	state (dict) – The torchbearer.Trial state.

	
class torchbearer.metrics.wrappers.ToDict(metric)

	The ToDict class is an AdvancedMetric which will put output from the inner Metric in
a dict (mapping metric name to value) before returning. When in eval mode, ‘val_’ will be prepended to the metric
name.

Example:

>>> from torchbearer import metrics

>>> @metrics.lambda_metric('my_metric')
... def my_metric(y_pred, y_true):
... return y_pred + y_true
...
>>> metric = metrics.ToDict(my_metric().build())
>>> metric.process({'y_pred': 4, 'y_true': 5})
{'my_metric': 9}
>>> metric.eval()
>>> metric.process({'y_pred': 4, 'y_true': 5})
{'val_my_metric': 9}

	Parameters

	metric (Metric) – The Metric instance to wrap.

	
eval(data_key=None)

	Put the metric in eval mode.

	Parameters

	data_key (StateKey) – The torchbearer data_key, if used

	
process_final_train(*args)

	Process the given state and return the final metric value for a training iteration.

	Returns

	The final metric value for a training iteration.

	
process_final_validate(*args)

	Process the given state and return the final metric value for a validation iteration.

	Returns

	The final metric value for a validation iteration.

	
process_train(*args)

	Process the given state and return the metric value for a training iteration.

	Returns

	The metric value for a training iteration.

	
process_validate(*args)

	Process the given state and return the metric value for a validation iteration.

	Returns

	The metric value for a validation iteration.

	
reset(state)

	Reset the metric, called before the start of an epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
train()

	Put the metric in train mode.

Metric Aggregators

Aggregators are a special kind of Metric which takes as input, the output from a previous metric or metrics.
As a result, via a MetricTree, a series of aggregators can collect statistics such as Mean or Standard
Deviation without needing to compute the underlying metric multiple times. This can, however, make the aggregators
complex to use. It is therefore typically better to use the decorator API.

	
class torchbearer.metrics.aggregators.Mean(name, dim=None)

	Metric aggregator which calculates the mean of process outputs between calls to reset.

	Parameters

	
	name (str) – The name of this metric.

	dim (int, tuple) – The dimension(s) on which to perform the mean. If left as None, this will mean over the whole
Tensor

	
process(*args)

	Add the input to the rolling sum. Input must be a torch tensor.

	Parameters

	args – The output of some previous call to Metric.process().

	
process_final(*args)

	Compute and return the mean of all metric values since the last call to reset.

	Returns

	The mean of the metric values since the last call to reset.

	
reset(state)

	Reset the running count and total.

	Parameters

	state (dict) – The model state.

	
class torchbearer.metrics.aggregators.RunningMean(name, batch_size=50, step_size=10, dim=None)

	A RunningMetric which outputs the running mean of its input tensors over the course of an epoch.

	Parameters

	
	name (str) – The name of this running mean.

	batch_size (int) – The size of the deque to store of previous results.

	step_size (int) – The number of iterations between aggregations.

	dim (int, tuple) – The dimension(s) on which to perform the mean. If left as None, this will mean over the whole
Tensor

	
class torchbearer.metrics.aggregators.RunningMetric(name, batch_size=50, step_size=10)

	A metric which aggregates batches of results and presents a method to periodically process these into a value.

Note

Running metrics only provide output during training.

	Parameters

	
	name (str) – The name of the metric.

	batch_size (int) – The size of the deque to store of previous results.

	step_size (int) – The number of iterations between aggregations.

	
process_train(*args)

	Add the current metric value to the cache and call ‘_step’ is needed.

	Parameters

	args – The output of some Metric

	Returns

	The current metric value.

	
reset(state)

	Reset the step counter. Does not clear the cache.

	Parameters

	state (dict) – The current model state.

	
class torchbearer.metrics.aggregators.Std(name, unbiased=True, dim=None)

	Metric aggregator which calculates the sample standard deviation of process outputs between calls to reset.
Optionally calculate the population std if unbiased = False.

	Parameters

	
	name (str) – The name of this metric.

	unbiased (bool) – If True (default), calculates the sample standard deviation, else, the population standard
deviation

	dim (int, tuple) – The dimension(s) on which to compute the std. If left as None, this will operate over the
whole Tensor

	
process_final(*args)

	Compute and return the final standard deviation.

	Returns

	The standard deviation of each observation since the last reset call.

	
class torchbearer.metrics.aggregators.Var(name, unbiased=True, dim=None)

	Metric aggregator which calculates the sample variance of process outputs between calls to reset.
Optionally calculate the population variance if unbiased = False.

	Parameters

	
	name (str) – The name of this metric.

	unbiased (bool) – If True (default), calculates the sample variance, else, the population variance

	dim (int, tuple) – The dimension(s) on which to compute the std. If left as None, this will operate over the
whole Tensor

	
process(*args)

	Compute values required for the variance from the input. The input should be a torch Tensor. The sum and sum
of squares will be computed over the provided dimension.

	Parameters

	args (torch.Tensor) – The output of some previous call to Metric.process().

	
process_final(*args)

	Compute and return the final variance.

	Returns

	The variance of each observation since the last reset call.

	
reset(state)

	Reset the statistics to compute the next variance.

	Parameters

	state (dict) – The model state.

Base Metrics

Base metrics are the base classes which represent the metrics supplied with torchbearer. They all use the
default_for_key() decorator so that they can be accessed in the call to torchbearer.Model via the
following strings:

	‘acc’ or ‘accuracy’: The DefaultAccuracy metric

	‘binary_acc’ or ‘binary_accuracy’: The BinaryAccuracy metric

	‘cat_acc’ or ‘cat_accuracy’: The CategoricalAccuracy metric

	‘top_5_acc’ or ‘top_5_accuracy’: The TopKCategoricalAccuracy metric

	‘top_10_acc’ or ‘top_10_accuracy’: The TopKCategoricalAccuracy metric with k=10

	‘mse’: The MeanSquaredError metric

	‘loss’: The Loss metric

	‘epoch’: The Epoch metric

	‘lr’: The LR metric

	‘roc_auc’ or ‘roc_auc_score’: The RocAucScore metric

	
class torchbearer.metrics.default.DefaultAccuracy

	The default accuracy metric loads in a different accuracy metric depending on the loss function or criterion in
use at the start of training. Default for keys: acc, accuracy. The following bindings are in place for both nn
and functional variants:

	cross entropy loss -> CategoricalAccuracy [DEFAULT]

	nll loss -> CategoricalAccuracy

	mse loss -> MeanSquaredError

	bce loss -> BinaryAccuracy

	bce loss with logits -> BinaryAccuracy

	
eval(data_key=None)

	Put the metric in eval mode during model validation.

	
process(*args)

	Process the state and update the metric for one iteration.

	Parameters

	args – Arguments given to the metric. If this is a root level metric, will be given state

	Returns

	None, or the value of the metric for this batch

	
process_final(*args)

	Process the terminal state and output the final value of the metric.

	Parameters

	args – Arguments given to the metric. If this is a root level metric, will be given state

	Returns

	None or the value of the metric for this epoch

	
reset(state)

	Reset the metric, called before the start of an epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
train()

	Put the metric in train mode during model training.

	
class torchbearer.metrics.primitives.BinaryAccuracy

	Binary accuracy metric. Uses torch.eq to compare predictions to targets. Decorated with a mean and running_mean.
Default for key: ‘binary_acc’.

	Parameters

	
	pred_key (StateKey) – The key in state which holds the predicted values

	target_key (StateKey) – The key in state which holds the target values

	threshold (float) – value between 0 and 1 to use as a threshold when binarizing predictions and targets

	
class torchbearer.metrics.primitives.CategoricalAccuracy(ignore_index=-100)

	Categorical accuracy metric. Uses torch.max to determine predictions and compares to targets. Decorated with a
mean, running_mean and std. Default for key: ‘cat_acc’

	Parameters

	
	pred_key (StateKey) – The key in state which holds the predicted values

	target_key (StateKey) – The key in state which holds the target values

	ignore_index (int) – Specifies a target value that is ignored and does not contribute to the metric output.
See https://pytorch.org/docs/stable/nn.html#crossentropyloss

	
class torchbearer.metrics.primitives.TopKCategoricalAccuracy(k=5, ignore_index=-100)

	Top K Categorical accuracy metric. Uses torch.topk to determine the top k predictions and compares to targets.
Decorated with a mean, running_mean and std. Default for keys: ‘top_5_acc’, ‘top_10_acc’.

	Parameters

	
	pred_key (StateKey) – The key in state which holds the predicted values

	target_key (StateKey) – The key in state which holds the target values

	ignore_index (int) – Specifies a target value that is ignored and does not contribute to the metric output.
See https://pytorch.org/docs/stable/nn.html#crossentropyloss

	
class torchbearer.metrics.primitives.MeanSquaredError

	Mean squared error metric. Computes the pixelwise squared error which is then averaged with decorators.
Decorated with a mean and running_mean. Default for key: ‘mse’.

	Parameters

	
	pred_key (StateKey) – The key in state which holds the predicted values

	target_key (StateKey) – The key in state which holds the target values

	
class torchbearer.metrics.primitives.Loss

	Simply returns the ‘loss’ value from the model state. Decorated with a mean, running_mean and std. Default for
key: ‘loss’.

	State Requirements:

	
	torchbearer.state.LOSS: This key should map to the loss for the current batch

	
class torchbearer.metrics.primitives.Epoch

	Returns the ‘epoch’ from the model state. Default for key: ‘epoch’.

	State Requirements:

	
	torchbearer.state.EPOCH: This key should map to the number of the current epoch

	
class torchbearer.metrics.roc_auc_score.RocAucScore(one_hot_labels=True, one_hot_offset=0, one_hot_classes=10)

	Area Under ROC curve metric. Default for keys: ‘roc_auc’, ‘roc_auc_score’.

Note

Requires sklearn.metrics.

	Parameters

	
	one_hot_labels (bool) – If True, convert the labels to a one hot encoding. Required if they are not already.

	one_hot_offset (int) – Subtracted from class labels, use if not already zero based.

	one_hot_classes (int) – Number of classes for the one hot encoding.

Timer

	
class torchbearer.metrics.timer.TimerMetric(time_keys=())

	
	
get_timings()

	

	
on_backward(state)

	Perform some action with the given state as context after backward has been called on the loss.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_criterion(state)

	Perform some action with the given state as context after the criterion has been evaluated.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_criterion_validation(state)

	Perform some action with the given state as context after the criterion evaluation has been completed
with the validation data.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_end(state)

	Perform some action with the given state as context at the end of the model fitting.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_end_epoch(state)

	Perform some action with the given state as context at the end of each epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_end_training(state)

	Perform some action with the given state as context after the training loop has completed.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_end_validation(state)

	Perform some action with the given state as context at the end of the validation loop.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_forward(state)

	Perform some action with the given state as context after the forward pass (model output) has been completed.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_forward_validation(state)

	Perform some action with the given state as context after the forward pass (model output) has been completed
with the validation data.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_sample(state)

	Perform some action with the given state as context after data has been sampled from the generator.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_sample_validation(state)

	Perform some action with the given state as context after data has been sampled from the validation generator.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_start(state)

	Perform some action with the given state as context at the start of a model fit.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_start_epoch(state)

	Perform some action with the given state as context at the start of each epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_start_training(state)

	Perform some action with the given state as context at the start of the training loop.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_start_validation(state)

	Perform some action with the given state as context at the start of the validation loop.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_step_training(state)

	Perform some action with the given state as context after step has been called on the optimiser.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_step_validation(state)

	Perform some action with the given state as context at the end of each validation step.

	Parameters

	state (dict) – The current state dict of the Trial.

	
process(*args)

	Process the state and update the metric for one iteration.

	Parameters

	args – Arguments given to the metric. If this is a root level metric, will be given state

	Returns

	None, or the value of the metric for this batch

	
reset(state)

	Reset the metric, called before the start of an epoch.

	Parameters

	state (dict) – The current state dict of the Trial.

	
update_time(text, metric, state)

	

torchbearer.variational

Distributions

The distributions module is an extension of the torch.distributions package intended to facilitate implementations
required for specific variational approaches through the SimpleDistribution class. Generally, using a
torch.distributions.Distribution object should be preferred over a SimpleDistribution, for better
argument validation and more complete implementations. However, if you need to implement something new for a specific
variational approach, then a SimpleDistribution may be more forgiving. Furthermore, you may find it easier
to understand the function of the implementations here.

	
class torchbearer.variational.distributions.SimpleDistribution(batch_shape=<sphinx.ext.autodoc.importer._MockObject object>, event_shape=<sphinx.ext.autodoc.importer._MockObject object>)

	Abstract base class for a simple distribution which only implements rsample and log_prob. If the log_prob
function is not differentiable with respect to the distribution parameters or the given value, then this should be
mentioned in the documentation.

	
arg_constraints

	

	
cdf(value)

	

	
entropy()

	

	
enumerate_support(expand=True)

	

	
expand(batch_shape, _instance=None)

	

	
has_rsample = True

	

	
icdf(value)

	

	
log_prob(value)

	Returns the log of the probability density/mass function evaluated at value.
:param value: Value at which to evaluate log probabilty
:type value: torch.Tensor, Number

	
mean

	

	
rsample(sample_shape=<sphinx.ext.autodoc.importer._MockObject object>)

	Returns a reparameterized sample or batch of reparameterized samples if the distribution parameters are batched.

	
support

	

	
variance

	

	
class torchbearer.variational.distributions.SimpleExponential(lograte)

	The SimpleExponential class is a SimpleDistribution which implements a straight forward Exponential
distribution with the given lograte. This performs significantly fewer checks than torch.distributions.Exponential
, but should be sufficient for the purpose of implementing a VAE. By using a lograte, the log_prob can be computed
in a stable fashion, without taking a logarithm.

	Parameters

	lograte (torch.Tensor, Number) – The natural log of the rate of the distribution, numbers will be cast to tensors

	
log_prob(value)

	Calculates the log probability that the given value was drawn from this distribution. The log_prob for this
distribution is fully differentiable and has stable gradient since we use the lograte here.

	Parameters

	value (torch.Tensor, Number) – The sampled value

	Returns

	The log probability that the given value was drawn from this distribution

	
rsample(sample_shape=<sphinx.ext.autodoc.importer._MockObject object>)

	Simple rsample for an Exponential distribution.

	Parameters

	sample_shape (torch.Size, tuple) – Shape of the sample (per lograte given)

	Returns

	A reparameterized sample with gradient with respect to the distribution parameters

	
class torchbearer.variational.distributions.SimpleNormal(mu, logvar)

	The SimpleNormal class is a SimpleDistribution which implements a straight forward Normal / Gaussian
distribution. This performs significantly fewer checks than torch.distributions.Normal, but should be sufficient
for the purpose of implementing a VAE.

	Parameters

	
	mu (torch.Tensor, Number) – The mean of the distribution, numbers will be cast to tensors

	logvar (torch.Tensor, Number) – The log variance of the distribution, numbers will be cast to tensors

	
log_prob(value)

	Calculates the log probability that the given value was drawn from this distribution. Since the density of a
Gaussian is differentiable, this function is differentiable.

	Parameters

	value (torch.Tensor, Number) – The sampled value

	Returns

	The log probability that the given value was drawn from this distribution

	
rsample(sample_shape=<sphinx.ext.autodoc.importer._MockObject object>)

	Simple rsample for a Normal distribution.

	Parameters

	sample_shape (torch.Size, tuple) – Shape of the sample (per mean / variance given)

	Returns

	A reparameterized sample with gradient with respect to the distribution parameters

	
class torchbearer.variational.distributions.SimpleUniform(low, high)

	The SimpleUniform class is a SimpleDistribution which implements a straight forward Uniform distribution
in the interval [low, high). This performs significantly fewer checks than torch.distributions.Uniform, but
should be sufficient for the purpose of implementing a VAE.

	Parameters

	
	low (torch.Tensor, Number) – The lower range of the distribution (inclusive), numbers will be cast to tensors

	high (torch.Tensor, Number) – The upper range of the distribution (exclusive), numbers will be cast to tensors

	
log_prob(value)

	Calculates the log probability that the given value was drawn from this distribution. Since this distribution
is uniform, the log probability is -log(high - low) for all values in the range [low, high) and -inf
elsewhere. This function is therefore only piecewise differentiable.

	Parameters

	value (torch.Tensor, Number) – The sampled value

	Returns

	The log probability that the given value was drawn from this distribution

	
rsample(sample_shape=<sphinx.ext.autodoc.importer._MockObject object>)

	Simple rsample for a Uniform distribution.

	Parameters

	sample_shape (torch.Size, tuple) – Shape of the sample (per low / high given)

	Returns

	A reparameterized sample with gradient with respect to the distribution parameters

	
class torchbearer.variational.distributions.SimpleWeibull(l, k)

	The SimpleWeibull class is a SimpleDistribution which implements a straight forward Weibull
distribution. This performs significantly fewer checks than torch.distributions.Weibull, but should be sufficient
for the purpose of implementing a VAE.

@article{squires2019a,
title={A Variational Autoencoder for Probabilistic Non-Negative Matrix Factorisation},
author={Steven Squires and Adam Prugel-Bennett and Mahesan Niranjan},
year={2019}
}

	Parameters

	
	l (torch.Tensor, Number) – The scale parameter of the distribution, numbers will be cast to tensors

	k (torch.Tensor, Number) – The shape parameter of the distribution, numbers will be cast to tensors

	
log_prob(value)

	Calculates the log probability that the given value was drawn from this distribution. This function is differentiable
and its log probability is -inf for values less than 0.

	Parameters

	value (torch.Tensor, Number) – The sampled value

	Returns

	The log probability that the given value was drawn from this distribution

	
rsample(sample_shape=<sphinx.ext.autodoc.importer._MockObject object>)

	Simple rsample for a Weibull distribution.

	Parameters

	sample_shape (torch.Size, tuple) – Shape of the sample (per k / lambda given)

	Returns

	A reparameterized sample with gradient with respect to the distribution parameters

Divergences

	
class torchbearer.variational.divergence.DivergenceBase(keys, state_key=None)

	The DivergenceBase class is an abstract base class which defines a series of useful methods for dealing
with divergences. The keys dict given on init is used to map objects in state to kwargs in the compute function.

	Parameters

	
	keys (dict) – Dictionary which maps kwarg names to StateKey objects. When compute() is called,
the given kwargs are mapped to their associated values in state.

	state_key – If not None, the value outputted by compute() is stored in state with the given key.

	
compute(**kwargs)

	Compute the loss with the given kwargs defined in the constructor.

	Parameters

	kwargs – The bound kwargs, taken from state with the keys given in the constructor

	Returns

	The calculated divergence as a two dimensional tensor (batch, distribution dimensions)

	
loss(state)

	

	
on_criterion(state)

	Perform some action with the given state as context after the criterion has been evaluated.

	Parameters

	state (dict) – The current state dict of the Trial.

	
on_criterion_validation(state)

	Perform some action with the given state as context after the criterion evaluation has been completed
with the validation data.

	Parameters

	state (dict) – The current state dict of the Trial.

	
with_beta(beta)

	Multiply the divergence by the given beta, as introduced by beta-vae.

@article{higgins2016beta,
 title={beta-vae: Learning basic visual concepts with a constrained variational framework},
 author={Higgins, Irina and Matthey, Loic and Pal, Arka and Burgess, Christopher and Glorot, Xavier and Botvinick, Matthew and Mohamed, Shakir and Lerchner, Alexander},
 year={2016}
}

	Parameters

	beta (float) – The beta (> 1) to multiply by.

	Returns

	self

	Return type

	Divergence

	
with_linear_capacity(min_c=0, max_c=25, steps=100000, gamma=1000)

	Limit divergence by capacity, linearly increased from min_c to max_c for steps, as introduced in
Understanding disentangling in beta-VAE.

@article{burgess2018understanding,
 title={Understanding disentangling in beta-vae},
 author={Burgess, Christopher P and Higgins, Irina and Pal, Arka and Matthey, Loic and Watters, Nick and Desjardins, Guillaume and Lerchner, Alexander},
 journal={arXiv preprint arXiv:1804.03599},
 year={2018}
}

	Parameters

	
	min_c (float) – Minimum capacity

	max_c (float) – Maximum capacity

	steps (int) – Number of steps to increase over

	gamma (float) – Multiplicative gamma, usually a high number

	Returns

	self

	Return type

	Divergence

	
with_post_function(post_fcn)

	Register the given post function, to be applied after to loss after reduction.

	Parameters

	post_fcn – A function of loss which applies some operation (e.g. multiplying by beta)

	Returns

	self

	Return type

	Divergence

	
with_reduction(reduction_fcn)

	Override the reduction operation with the given function, use this if your divergence doesn’t output a two
dimensional tensor.

	Parameters

	reduction_fcn – The function to be applied to the divergence output and return a single value

	Returns

	self

	Return type

	Divergence

	
with_sum_mean_reduction()

	Override the reduction function to take a sum over dimension one and a mean over dimension zero. (default)

	Returns

	self

	Return type

	Divergence

	
with_sum_sum_reduction()

	Override the reduction function to take a sum over all dimensions.

	Returns

	self

	Return type

	Divergence

	
class torchbearer.variational.divergence.SimpleExponentialSimpleExponentialKL(input_key, target_key, state_key=None)

	A KL divergence between two SimpleExponential (or similar) distributions.

Note

The distribution object must have lograte attribute

	Args:

	input_key: StateKey instance which will be mapped to the input distribution object.
target_key: StateKey instance which will be mapped to the target distribution object.
state_key: If not None, the value outputted by compute() is stored in state with the given key.

	
compute(input, target)

	Compute the loss with the given kwargs defined in the constructor.

	Parameters

	kwargs – The bound kwargs, taken from state with the keys given in the constructor

	Returns

	The calculated divergence as a two dimensional tensor (batch, distribution dimensions)

	
class torchbearer.variational.divergence.SimpleNormalSimpleNormalKL(input_key, target_key, state_key=None)

	A KL divergence between two SimpleNormal (or similar) distributions.

Note

The distribution objects must have mu and logvar attributes

	Parameters

	
	input_key – StateKey instance which will be mapped to the input distribution object.

	target_key – StateKey instance which will be mapped to the target distribution object.

	state_key – If not None, the value outputted by compute() is stored in state with the given key.

	
compute(input, target)

	Compute the loss with the given kwargs defined in the constructor.

	Parameters

	kwargs – The bound kwargs, taken from state with the keys given in the constructor

	Returns

	The calculated divergence as a two dimensional tensor (batch, distribution dimensions)

	
class torchbearer.variational.divergence.SimpleNormalUnitNormalKL(input_key, state_key=None)

	A KL divergence between a SimpleNormal (or similar) instance and a fixed unit normal (N[0, 1]) target.

Note

The distribution object must have mu and logvar attributes

	Parameters

	
	input_key – StateKey instance which will be mapped to the distribution object.

	state_key – If not None, the value outputted by compute() is stored in state with the given key.

	
compute(input)

	Compute the loss with the given kwargs defined in the constructor.

	Parameters

	kwargs – The bound kwargs, taken from state with the keys given in the constructor

	Returns

	The calculated divergence as a two dimensional tensor (batch, distribution dimensions)

	
class torchbearer.variational.divergence.SimpleWeibullSimpleWeibullKL(input_key, target_key, state_key=None)

	A KL divergence between two SimpleWeibull (or similar) distributions.

Note

The distribution object must have lambda (scale) and k (shape) attributes

@article{DBLP:journals/corr/Bauckhage14,
 author = {Christian Bauckhage},
 title = {Computing the Kullback-Leibler Divergence between two Generalized
 Gamma Distributions},
 journal = {CoRR},
 volume = {abs/1401.6853},
 year = {2014}
}

	Args:

	input_key: StateKey instance which will be mapped to the input distribution object.
target_key: StateKey instance which will be mapped to the target distribution object.
state_key: If not None, the value outputted by compute() is stored in state with the given key.

	
compute(input, target)

	Compute the loss with the given kwargs defined in the constructor.

	Parameters

	kwargs – The bound kwargs, taken from state with the keys given in the constructor

	Returns

	The calculated divergence as a two dimensional tensor (batch, distribution dimensions)

Auto-Encoding

	
class torchbearer.variational.auto_encoder.AutoEncoderBase(latent_dims)

	
	
decode(sample, state=None)

	Decode the given latent space sample batch to images.

	Parameters

	
	sample – The latent space samples

	state – The trial state

	Returns

	Decoded images

	
encode(x, state=None)

	Encode the given batch of images and return latent space sample for each.

	Parameters

	
	x – Batch of images to encode

	state – The trial state

	Returns

	Encoded samples / tuple of samples for different spaces

	
forward(x, state=None)

	Encode then decode the inputs, returning the result. Also binds the target as the input images in state.

	Parameters

	
	x – Model input batch

	state – The trial state

	Returns

	Auto-Encoded images

Datasets

	
class torchbearer.variational.datasets.CelebA(root, transform=None, target_transform=None)

	

	
class torchbearer.variational.datasets.CelebA_HQ(root, as_npy=False, transform=None)

	
	
static npy_loader(path)

	

	
class torchbearer.variational.datasets.SimpleImageFolder(root, loader=None, extensions=None, transform=None, target_transform=None)

	

	
class torchbearer.variational.datasets.dSprites(root, download=False, transform=None)

	
	
download()

	

	
get_img_by_latent(latent_code)

	Returns the image defined by the latent code

	Parameters

	latent_code (list of int) – Latent code of length 6 defining each generative factor

	Returns

	Image defined by given code

	
load_data()

	

	
torchbearer.variational.datasets.make_dataset(dir, extensions)

	

Visualisation

	
class torchbearer.variational.visualisation.CodePathWalker(num_steps, p1, p2)

	
	
vis(state)

	Create the tensor of images to be displayed

	
class torchbearer.variational.visualisation.ImagePathWalker(num_steps, im1, im2)

	
	
vis(state)

	Create the tensor of images to be displayed

	
class torchbearer.variational.visualisation.LatentWalker(same_image, row_size)

	
	
for_data(data_key)

	
	Parameters

	data_key (StateKey) – State key which will contain data to act on

	Returns

	self

	Return type

	LatentWalker

	
for_space(space_id)

	Sets the ID for which latent space to vary when model outputs [latent_space_0, latent_space_1, …]

	Parameters

	space_id (int) – ID of the latent space to vary

	Returns

	self

	Return type

	LatentWalker

	
on_train()

	Sets the walker to run during training

	Returns

	self

	Return type

	LatentWalker

	
on_val()

	Sets the walker to run during validation

	Returns

	self

	Return type

	LatentWalker

	
to_file(file)

	
	Parameters

	file (string, pathlib.Path object or file object) – File in which result is saved

	Returns

	self

	Return type

	LatentWalker

	
to_key(state_key)

	
	Parameters

	state_key (StateKey) – State key under which to store result

	Returns

	self

	Return type

	LatentWalker

	
vis(state)

	Create the tensor of images to be displayed

	
class torchbearer.variational.visualisation.LinSpaceWalker(lin_start=-1, lin_end=1, lin_steps=8, dims_to_walk=[0], zero_init=False, same_image=False)

	
	
vis(state)

	Create the tensor of images to be displayed

	
class torchbearer.variational.visualisation.RandomWalker(var=1, num_images=32, uniform=False, row_size=8)

	
	
vis(state)

	Create the tensor of images to be displayed

	
class torchbearer.variational.visualisation.ReconstructionViewer(row_size=8, recon_key=y_pred)

	
	
vis(state)

	Create the tensor of images to be displayed

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 torchbearer	

 	
 	
 torchbearer.callbacks	

 	
 	
 torchbearer.callbacks.callbacks	

 	
 	
 torchbearer.callbacks.checkpointers	

 	
 	
 torchbearer.callbacks.csv_logger	

 	
 	
 torchbearer.callbacks.decorators	

 	
 	
 torchbearer.callbacks.early_stopping	

 	
 	
 torchbearer.callbacks.gradient_clipping	

 	
 	
 torchbearer.callbacks.imaging	

 	
 	
 torchbearer.callbacks.imaging.imaging	

 	
 	
 torchbearer.callbacks.imaging.inside_cnns	

 	
 	
 torchbearer.callbacks.init	

 	
 	
 torchbearer.callbacks.lr_finder	

 	
 	
 torchbearer.callbacks.printer	

 	
 	
 torchbearer.callbacks.tensor_board	

 	
 	
 torchbearer.callbacks.terminate_on_nan	

 	
 	
 torchbearer.callbacks.torch_scheduler	

 	
 	
 torchbearer.callbacks.weight_decay	

 	
 	
 torchbearer.cv_utils	

 	
 	
 torchbearer.metrics	

 	
 	
 torchbearer.metrics.aggregators	

 	
 	
 torchbearer.metrics.decorators	

 	
 	
 torchbearer.metrics.default	

 	
 	
 torchbearer.metrics.metrics	

 	
 	
 torchbearer.metrics.primitives	

 	
 	
 torchbearer.metrics.roc_auc_score	

 	
 	
 torchbearer.metrics.timer	

 	
 	
 torchbearer.metrics.wrappers	

 	
 	
 torchbearer.state	

 	
 	
 torchbearer.trial	

 	
 	
 torchbearer.variational	

 	
 	
 torchbearer.variational.auto_encoder	

 	
 	
 torchbearer.variational.datasets	

 	
 	
 torchbearer.variational.distributions	

 	
 	
 torchbearer.variational.divergence	

 	
 	
 torchbearer.variational.visualisation	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	AbstractTensorBoard (class in torchbearer.callbacks.tensor_board)

 	add_child() (torchbearer.metrics.metrics.MetricTree method)

 	add_default() (in module torchbearer.metrics.metrics)

 	add_param_group() (torchbearer.trial.MockOptimizer method)

 	add_to_loss() (in module torchbearer.callbacks.decorators)

 	
 	AdvancedMetric (class in torchbearer.metrics.metrics)

 	append() (torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.trial.CallbackListInjection method)

 	arg_constraints (torchbearer.variational.distributions.SimpleDistribution attribute)

 	AutoEncoderBase (class in torchbearer.variational.auto_encoder)

B

 	
 	BACKWARD_ARGS (in module torchbearer.state)

 	BATCH (in module torchbearer.state)

 	BatchLambda (class in torchbearer.metrics.wrappers)

 	
 	Best (class in torchbearer.callbacks.checkpointers)

 	BinaryAccuracy (class in torchbearer.metrics.primitives)

 	bind_to() (in module torchbearer.callbacks.decorators)

C

 	
 	CachingImagingCallback (class in torchbearer.callbacks.imaging.imaging)

 	Callback (class in torchbearer.bases)

 	CALLBACK_LIST (in module torchbearer.state)

 	CALLBACK_STATES (torchbearer.callbacks.callbacks.CallbackList attribute)

 	CALLBACK_TYPES (torchbearer.callbacks.callbacks.CallbackList attribute)

 	CallbackList (class in torchbearer.callbacks.callbacks)

 	CallbackListInjection (class in torchbearer.trial)

 	CategoricalAccuracy (class in torchbearer.metrics.primitives)

 	cdf() (torchbearer.variational.distributions.SimpleDistribution method)

 	CelebA (class in torchbearer.variational.datasets)

 	CelebA_HQ (class in torchbearer.variational.datasets)

 	ClassAppearanceModel (class in torchbearer.callbacks.imaging.inside_cnns)

 	close_writer() (in module torchbearer.callbacks.tensor_board)

 	(torchbearer.callbacks.tensor_board.AbstractTensorBoard method)

 	CodePathWalker (class in torchbearer.variational.visualisation)

 	
 	compute() (torchbearer.variational.divergence.DivergenceBase method)

 	(torchbearer.variational.divergence.SimpleExponentialSimpleExponentialKL method)

 	(torchbearer.variational.divergence.SimpleNormalSimpleNormalKL method)

 	(torchbearer.variational.divergence.SimpleNormalUnitNormalKL method)

 	(torchbearer.variational.divergence.SimpleWeibullSimpleWeibullKL method)

 	ConsolePrinter (class in torchbearer.callbacks.printer)

 	copy() (torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.trial.CallbackListInjection method)

 	CosineAnnealingLR (class in torchbearer.callbacks.torch_scheduler)

 	count_args() (in module torchbearer.callbacks.decorators)

 	cpu() (torchbearer.trial.Trial method)

 	CRITERION (in module torchbearer.state)

 	CSVLogger (class in torchbearer.callbacks.csv_logger)

 	cuda() (torchbearer.trial.Trial method)

 	CyclicLR (class in torchbearer.callbacks.lr_finder)

D

 	
 	DATA (in module torchbearer.state)

 	data (torchbearer.state.State attribute)

 	DATA_TYPE (in module torchbearer.state)

 	DatasetValidationSplitter (class in torchbearer.cv_utils)

 	decode() (torchbearer.variational.auto_encoder.AutoEncoderBase method)

 	deep_to() (in module torchbearer.trial)

 	
 	default_for_key() (in module torchbearer.metrics.decorators)

 	DefaultAccuracy (class in torchbearer.metrics.default)

 	DEVICE (in module torchbearer.state)

 	DivergenceBase (class in torchbearer.variational.divergence)

 	download() (torchbearer.variational.datasets.dSprites method)

 	dSprites (class in torchbearer.variational.datasets)

E

 	
 	EarlyStopping (class in torchbearer.callbacks.early_stopping)

 	encode() (torchbearer.variational.auto_encoder.AutoEncoderBase method)

 	ENDPOINT (torchbearer.callbacks.tensor_board.VisdomParams attribute)

 	entropy() (torchbearer.variational.distributions.SimpleDistribution method)

 	enumerate_support() (torchbearer.variational.distributions.SimpleDistribution method)

 	ENV (torchbearer.callbacks.tensor_board.VisdomParams attribute)

 	Epoch (class in torchbearer.metrics.primitives)

 	EPOCH (in module torchbearer.state)

 	EpochLambda (class in torchbearer.metrics.wrappers)

 	
 	eval() (torchbearer.bases.Metric method)

 	(torchbearer.metrics.default.DefaultAccuracy method)

 	(torchbearer.metrics.metrics.AdvancedMetric method)

 	(torchbearer.metrics.metrics.MetricList method)

 	(torchbearer.metrics.metrics.MetricTree method)

 	(torchbearer.metrics.wrappers.ToDict method)

 	(torchbearer.trial.Trial method)

 	evaluate() (torchbearer.trial.Trial method)

 	expand() (torchbearer.variational.distributions.SimpleDistribution method)

 	ExponentialLR (class in torchbearer.callbacks.torch_scheduler)

F

 	
 	FINAL_PREDICTIONS (in module torchbearer.state)

 	for_data() (torchbearer.variational.visualisation.LatentWalker method)

 	for_inf_steps() (torchbearer.trial.Trial method)

 	for_inf_test_steps() (torchbearer.trial.Trial method)

 	for_inf_train_steps() (torchbearer.trial.Trial method)

 	for_inf_val_steps() (torchbearer.trial.Trial method)

 	
 	for_space() (torchbearer.variational.visualisation.LatentWalker method)

 	for_steps() (torchbearer.trial.Trial method)

 	for_test_steps() (torchbearer.trial.Trial method)

 	for_train_steps() (torchbearer.trial.Trial method)

 	for_val_steps() (torchbearer.trial.Trial method)

 	forward() (torchbearer.variational.auto_encoder.AutoEncoderBase method)

 	FromState (class in torchbearer.callbacks.imaging.imaging)

G

 	
 	GENERATOR (in module torchbearer.state)

 	get_default() (in module torchbearer.metrics.metrics)

 	(in module torchbearer.trial)

 	get_img_by_latent() (torchbearer.variational.datasets.dSprites method)

 	get_key() (torchbearer.state.State method)

 	get_printer() (in module torchbearer.trial)

 	get_timings() (torchbearer.metrics.timer.TimerMetric method)

 	
 	get_train_dataset() (torchbearer.cv_utils.DatasetValidationSplitter method)

 	get_train_valid_sets() (in module torchbearer.cv_utils)

 	get_val_dataset() (torchbearer.cv_utils.DatasetValidationSplitter method)

 	get_writer() (in module torchbearer.callbacks.tensor_board)

 	(torchbearer.callbacks.tensor_board.AbstractTensorBoard method)

 	GradientClipping (class in torchbearer.callbacks.gradient_clipping)

 	GradientNormClipping (class in torchbearer.callbacks.gradient_clipping)

H

 	
 	has_rsample (torchbearer.variational.distributions.SimpleDistribution attribute)

 	HISTORY (in module torchbearer.state)

 	
 	HTTP_PROXY_HOST (torchbearer.callbacks.tensor_board.VisdomParams attribute)

 	HTTP_PROXY_PORT (torchbearer.callbacks.tensor_board.VisdomParams attribute)

I

 	
 	icdf() (torchbearer.variational.distributions.SimpleDistribution method)

 	ImagePathWalker (class in torchbearer.variational.visualisation)

 	ImagingCallback (class in torchbearer.callbacks.imaging.imaging)

 	INF_TRAIN_LOADING (in module torchbearer.state)

 	inject_callback() (in module torchbearer.trial)

 	
 	inject_printer() (in module torchbearer.trial)

 	inject_sampler() (in module torchbearer.trial)

 	INPUT (in module torchbearer.state)

 	Interval (class in torchbearer.callbacks.checkpointers)

 	IPV6 (torchbearer.callbacks.tensor_board.VisdomParams attribute)

 	ITERATOR (in module torchbearer.state)

K

 	
 	KaimingNormal (class in torchbearer.callbacks.init)

 	
 	KaimingUniform (class in torchbearer.callbacks.init)

L

 	
 	L1WeightDecay (class in torchbearer.callbacks.weight_decay)

 	L2WeightDecay (class in torchbearer.callbacks.weight_decay)

 	lambda_metric() (in module torchbearer.metrics.decorators)

 	LambdaCallback (class in torchbearer.callbacks.decorators)

 	LambdaLR (class in torchbearer.callbacks.torch_scheduler)

 	LatentWalker (class in torchbearer.variational.visualisation)

 	LinSpaceWalker (class in torchbearer.variational.visualisation)

 	LiveLossPlot (class in torchbearer.callbacks.live_loss_plot)

 	load_batch_infinite() (in module torchbearer.trial)

 	load_batch_none() (in module torchbearer.trial)

 	load_batch_predict() (in module torchbearer.trial)

 	load_batch_standard() (in module torchbearer.trial)

 	load_data() (torchbearer.variational.datasets.dSprites method)

 	load_state_dict() (torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.callbacks.checkpointers.Best method)

 	(torchbearer.callbacks.checkpointers.Interval method)

 	(torchbearer.callbacks.early_stopping.EarlyStopping method)

 	(torchbearer.trial.CallbackListInjection method)

 	(torchbearer.trial.MockOptimizer method)

 	(torchbearer.trial.Trial method)

 	
 	log_prob() (torchbearer.variational.distributions.SimpleDistribution method)

 	(torchbearer.variational.distributions.SimpleExponential method)

 	(torchbearer.variational.distributions.SimpleNormal method)

 	(torchbearer.variational.distributions.SimpleUniform method)

 	(torchbearer.variational.distributions.SimpleWeibull method)

 	LOG_TO_FILENAME (torchbearer.callbacks.tensor_board.VisdomParams attribute)

 	Loss (class in torchbearer.metrics.primitives)

 	LOSS (in module torchbearer.state)

 	loss() (torchbearer.variational.divergence.DivergenceBase method)

 	LsuvInit (class in torchbearer.callbacks.init)

M

 	
 	make_dataset() (in module torchbearer.variational.datasets)

 	MakeGrid (class in torchbearer.callbacks.imaging.imaging)

 	MAX_EPOCHS (in module torchbearer.state)

 	Mean (class in torchbearer.metrics.aggregators)

 	mean (torchbearer.variational.distributions.SimpleDistribution attribute)

 	mean() (in module torchbearer.metrics.decorators)

 	MeanSquaredError (class in torchbearer.metrics.primitives)

 	Metric (class in torchbearer.bases)

 	
 	METRIC_LIST (in module torchbearer.state)

 	MetricList (class in torchbearer.metrics.metrics)

 	METRICS (in module torchbearer.state)

 	MetricTree (class in torchbearer.metrics.metrics)

 	MockOptimizer (class in torchbearer.trial)

 	MODEL (in module torchbearer.state)

 	ModelCheckpoint() (in module torchbearer.callbacks.checkpointers)

 	MostRecent (class in torchbearer.callbacks.checkpointers)

 	MultiStepLR (class in torchbearer.callbacks.torch_scheduler)

N

 	
 	next_lr() (torchbearer.callbacks.lr_finder.CyclicLR method)

 	
 	npy_loader() (torchbearer.variational.datasets.CelebA_HQ static method)

O

 	
 	on_backward() (in module torchbearer.callbacks.decorators)

 	(torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.callbacks.gradient_clipping.GradientClipping method)

 	(torchbearer.callbacks.gradient_clipping.GradientNormClipping method)

 	(torchbearer.metrics.timer.TimerMetric method)

 	on_batch() (torchbearer.callbacks.imaging.imaging.CachingImagingCallback method)

 	(torchbearer.callbacks.imaging.imaging.FromState method)

 	(torchbearer.callbacks.imaging.imaging.ImagingCallback method)

 	(torchbearer.callbacks.imaging.inside_cnns.ClassAppearanceModel method)

 	on_cache() (torchbearer.callbacks.imaging.imaging.CachingImagingCallback method)

 	(torchbearer.callbacks.imaging.imaging.MakeGrid method)

 	on_checkpoint() (in module torchbearer.callbacks.decorators)

 	(torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.callbacks.checkpointers.Best method)

 	(torchbearer.callbacks.checkpointers.Interval method)

 	(torchbearer.callbacks.checkpointers.MostRecent method)

 	on_criterion() (in module torchbearer.callbacks.decorators)

 	(torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.callbacks.weight_decay.WeightDecay method)

 	(torchbearer.metrics.timer.TimerMetric method)

 	(torchbearer.variational.divergence.DivergenceBase method)

 	on_criterion_validation() (in module torchbearer.callbacks.decorators)

 	(torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.metrics.timer.TimerMetric method)

 	(torchbearer.variational.divergence.DivergenceBase method)

 	on_end() (in module torchbearer.callbacks.decorators)

 	(torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.callbacks.csv_logger.CSVLogger method)

 	(torchbearer.callbacks.early_stopping.EarlyStopping method)

 	(torchbearer.callbacks.live_loss_plot.LiveLossPlot method)

 	(torchbearer.callbacks.printer.Tqdm method)

 	(torchbearer.callbacks.tensor_board.AbstractTensorBoard method)

 	(torchbearer.callbacks.tensor_board.TensorBoard method)

 	(torchbearer.callbacks.tensor_board.TensorBoardText method)

 	(torchbearer.metrics.timer.TimerMetric method)

 	on_end_epoch() (in module torchbearer.callbacks.decorators)

 	(torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.callbacks.csv_logger.CSVLogger method)

 	(torchbearer.callbacks.early_stopping.EarlyStopping method)

 	(torchbearer.callbacks.imaging.imaging.CachingImagingCallback method)

 	(torchbearer.callbacks.printer.Tqdm method)

 	(torchbearer.callbacks.tensor_board.TensorBoard method)

 	(torchbearer.callbacks.tensor_board.TensorBoardImages method)

 	(torchbearer.callbacks.tensor_board.TensorBoardProjector method)

 	(torchbearer.callbacks.tensor_board.TensorBoardText method)

 	(torchbearer.callbacks.terminate_on_nan.TerminateOnNaN method)

 	(torchbearer.callbacks.torch_scheduler.TorchScheduler method)

 	(torchbearer.metrics.timer.TimerMetric method)

 	on_end_training() (in module torchbearer.callbacks.decorators)

 	(torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.callbacks.printer.ConsolePrinter method)

 	(torchbearer.callbacks.printer.Tqdm method)

 	(torchbearer.metrics.timer.TimerMetric method)

 	on_end_validation() (in module torchbearer.callbacks.decorators)

 	(torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.callbacks.printer.ConsolePrinter method)

 	(torchbearer.callbacks.printer.Tqdm method)

 	(torchbearer.metrics.timer.TimerMetric method)

 	on_forward() (in module torchbearer.callbacks.decorators)

 	(torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.metrics.timer.TimerMetric method)

 	on_forward_validation() (in module torchbearer.callbacks.decorators)

 	(torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.metrics.timer.TimerMetric method)

 	on_init() (torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.callbacks.init.LsuvInit method)

 	(torchbearer.callbacks.init.WeightInit method)

 	
 	on_lambda() (torchbearer.callbacks.decorators.LambdaCallback method)

 	on_sample() (in module torchbearer.callbacks.decorators)

 	(torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.callbacks.lr_finder.CyclicLR method)

 	(torchbearer.callbacks.tensor_board.TensorBoard method)

 	(torchbearer.callbacks.torch_scheduler.TorchScheduler method)

 	(torchbearer.metrics.timer.TimerMetric method)

 	on_sample_validation() (in module torchbearer.callbacks.decorators)

 	(torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.metrics.timer.TimerMetric method)

 	on_start() (in module torchbearer.callbacks.decorators)

 	(torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.callbacks.checkpointers.Best method)

 	(torchbearer.callbacks.gradient_clipping.GradientClipping method)

 	(torchbearer.callbacks.gradient_clipping.GradientNormClipping method)

 	(torchbearer.callbacks.live_loss_plot.LiveLossPlot method)

 	(torchbearer.callbacks.lr_finder.CyclicLR method)

 	(torchbearer.callbacks.printer.Tqdm method)

 	(torchbearer.callbacks.tensor_board.AbstractTensorBoard method)

 	(torchbearer.callbacks.tensor_board.TensorBoardText method)

 	(torchbearer.callbacks.torch_scheduler.TorchScheduler method)

 	(torchbearer.callbacks.weight_decay.WeightDecay method)

 	(torchbearer.metrics.timer.TimerMetric method)

 	on_start_epoch() (in module torchbearer.callbacks.decorators)

 	(torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.callbacks.tensor_board.TensorBoard method)

 	(torchbearer.callbacks.tensor_board.TensorBoardText method)

 	(torchbearer.metrics.timer.TimerMetric method)

 	on_start_training() (in module torchbearer.callbacks.decorators)

 	(torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.callbacks.printer.Tqdm method)

 	(torchbearer.callbacks.torch_scheduler.TorchScheduler method)

 	(torchbearer.metrics.timer.TimerMetric method)

 	on_start_validation() (in module torchbearer.callbacks.decorators)

 	(torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.callbacks.printer.Tqdm method)

 	(torchbearer.metrics.timer.TimerMetric method)

 	on_step_training() (in module torchbearer.callbacks.decorators)

 	(torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.callbacks.csv_logger.CSVLogger method)

 	(torchbearer.callbacks.lr_finder.CyclicLR method)

 	(torchbearer.callbacks.printer.ConsolePrinter method)

 	(torchbearer.callbacks.printer.Tqdm method)

 	(torchbearer.callbacks.tensor_board.TensorBoard method)

 	(torchbearer.callbacks.tensor_board.TensorBoardText method)

 	(torchbearer.callbacks.terminate_on_nan.TerminateOnNaN method)

 	(torchbearer.callbacks.torch_scheduler.TorchScheduler method)

 	(torchbearer.metrics.timer.TimerMetric method)

 	on_step_validation() (in module torchbearer.callbacks.decorators)

 	(torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.callbacks.printer.ConsolePrinter method)

 	(torchbearer.callbacks.printer.Tqdm method)

 	(torchbearer.callbacks.tensor_board.TensorBoard method)

 	(torchbearer.callbacks.tensor_board.TensorBoardImages method)

 	(torchbearer.callbacks.tensor_board.TensorBoardProjector method)

 	(torchbearer.callbacks.terminate_on_nan.TerminateOnNaN method)

 	(torchbearer.metrics.timer.TimerMetric method)

 	on_test() (torchbearer.callbacks.imaging.imaging.ImagingCallback method)

 	on_train() (torchbearer.callbacks.imaging.imaging.ImagingCallback method)

 	(torchbearer.variational.visualisation.LatentWalker method)

 	on_val() (torchbearer.callbacks.imaging.imaging.ImagingCallback method)

 	(torchbearer.variational.visualisation.LatentWalker method)

 	once() (in module torchbearer.callbacks.decorators)

 	once_per_epoch() (in module torchbearer.callbacks.decorators)

 	only_if() (in module torchbearer.callbacks.decorators)

 	OPTIMIZER (in module torchbearer.state)

P

 	
 	PORT (torchbearer.callbacks.tensor_board.VisdomParams attribute)

 	predict() (torchbearer.trial.Trial method)

 	PREDICTION (in module torchbearer.state)

 	process() (torchbearer.bases.Metric method)

 	(torchbearer.callbacks.imaging.imaging.ImagingCallback method)

 	(torchbearer.metrics.aggregators.Mean method)

 	(torchbearer.metrics.aggregators.Var method)

 	(torchbearer.metrics.default.DefaultAccuracy method)

 	(torchbearer.metrics.metrics.AdvancedMetric method)

 	(torchbearer.metrics.metrics.MetricList method)

 	(torchbearer.metrics.metrics.MetricTree method)

 	(torchbearer.metrics.timer.TimerMetric method)

 	(torchbearer.metrics.wrappers.BatchLambda method)

 	(torchbearer.state.StateKey method)

 	process_final() (torchbearer.bases.Metric method)

 	(torchbearer.metrics.aggregators.Mean method)

 	(torchbearer.metrics.aggregators.Std method)

 	(torchbearer.metrics.aggregators.Var method)

 	(torchbearer.metrics.default.DefaultAccuracy method)

 	(torchbearer.metrics.metrics.AdvancedMetric method)

 	(torchbearer.metrics.metrics.MetricList method)

 	(torchbearer.metrics.metrics.MetricTree method)

 	(torchbearer.state.StateKey method)

 	
 	process_final_train() (torchbearer.metrics.metrics.AdvancedMetric method)

 	(torchbearer.metrics.wrappers.EpochLambda method)

 	(torchbearer.metrics.wrappers.ToDict method)

 	process_final_validate() (torchbearer.metrics.metrics.AdvancedMetric method)

 	(torchbearer.metrics.wrappers.EpochLambda method)

 	(torchbearer.metrics.wrappers.ToDict method)

 	process_train() (torchbearer.metrics.aggregators.RunningMetric method)

 	(torchbearer.metrics.metrics.AdvancedMetric method)

 	(torchbearer.metrics.wrappers.EpochLambda method)

 	(torchbearer.metrics.wrappers.ToDict method)

 	process_validate() (torchbearer.metrics.metrics.AdvancedMetric method)

 	(torchbearer.metrics.wrappers.EpochLambda method)

 	(torchbearer.metrics.wrappers.ToDict method)

R

 	
 	RAISE_EXCEPTIONS (torchbearer.callbacks.tensor_board.VisdomParams attribute)

 	RandomWalker (class in torchbearer.variational.visualisation)

 	ReconstructionViewer (class in torchbearer.variational.visualisation)

 	ReduceLROnPlateau (class in torchbearer.callbacks.torch_scheduler)

 	replay() (torchbearer.trial.Trial method)

 	reset() (torchbearer.bases.Metric method)

 	(torchbearer.metrics.aggregators.Mean method)

 	(torchbearer.metrics.aggregators.RunningMetric method)

 	(torchbearer.metrics.aggregators.Var method)

 	(torchbearer.metrics.default.DefaultAccuracy method)

 	(torchbearer.metrics.metrics.MetricList method)

 	(torchbearer.metrics.metrics.MetricTree method)

 	(torchbearer.metrics.timer.TimerMetric method)

 	(torchbearer.metrics.wrappers.EpochLambda method)

 	(torchbearer.metrics.wrappers.ToDict method)

 	
 	RocAucScore (class in torchbearer.metrics.roc_auc_score)

 	rsample() (torchbearer.variational.distributions.SimpleDistribution method)

 	(torchbearer.variational.distributions.SimpleExponential method)

 	(torchbearer.variational.distributions.SimpleNormal method)

 	(torchbearer.variational.distributions.SimpleUniform method)

 	(torchbearer.variational.distributions.SimpleWeibull method)

 	run() (torchbearer.trial.Trial method)

 	running_mean() (in module torchbearer.metrics.decorators)

 	RunningMean (class in torchbearer.metrics.aggregators)

 	RunningMetric (class in torchbearer.metrics.aggregators)

S

 	
 	sample() (torchbearer.trial.Sampler method)

 	Sampler (class in torchbearer.trial)

 	SAMPLER (in module torchbearer.state)

 	SELF (in module torchbearer.state)

 	SEND (torchbearer.callbacks.tensor_board.VisdomParams attribute)

 	SERVER (torchbearer.callbacks.tensor_board.VisdomParams attribute)

 	SimpleDistribution (class in torchbearer.variational.distributions)

 	SimpleExponential (class in torchbearer.variational.distributions)

 	SimpleExponentialSimpleExponentialKL (class in torchbearer.variational.divergence)

 	SimpleImageFolder (class in torchbearer.variational.datasets)

 	SimpleNormal (class in torchbearer.variational.distributions)

 	SimpleNormalSimpleNormalKL (class in torchbearer.variational.divergence)

 	SimpleNormalUnitNormalKL (class in torchbearer.variational.divergence)

 	SimpleUniform (class in torchbearer.variational.distributions)

 	SimpleWeibull (class in torchbearer.variational.distributions)

 	SimpleWeibullSimpleWeibullKL (class in torchbearer.variational.divergence)

 	State (class in torchbearer.state)

 	
 	state_dict() (torchbearer.bases.Callback method)

 	(torchbearer.callbacks.callbacks.CallbackList method)

 	(torchbearer.callbacks.checkpointers.Best method)

 	(torchbearer.callbacks.checkpointers.Interval method)

 	(torchbearer.callbacks.early_stopping.EarlyStopping method)

 	(torchbearer.trial.CallbackListInjection method)

 	(torchbearer.trial.MockOptimizer method)

 	(torchbearer.trial.Trial method)

 	state_key() (in module torchbearer.state)

 	StateKey (class in torchbearer.state)

 	Std (class in torchbearer.metrics.aggregators)

 	std() (in module torchbearer.metrics.decorators)

 	step() (torchbearer.trial.MockOptimizer method)

 	StepLR (class in torchbearer.callbacks.torch_scheduler)

 	STEPS (in module torchbearer.state)

 	STOP_TRAINING (in module torchbearer.state)

 	SubsetDataset (class in torchbearer.cv_utils)

 	support (torchbearer.variational.distributions.SimpleDistribution attribute)

T

 	
 	table_formatter() (torchbearer.callbacks.tensor_board.TensorBoardText static method)

 	TARGET (in module torchbearer.state)

 	target_to_key() (torchbearer.callbacks.imaging.inside_cnns.ClassAppearanceModel method)

 	TensorBoard (class in torchbearer.callbacks.tensor_board)

 	TensorBoardImages (class in torchbearer.callbacks.tensor_board)

 	TensorBoardProjector (class in torchbearer.callbacks.tensor_board)

 	TensorBoardText (class in torchbearer.callbacks.tensor_board)

 	TerminateOnNaN (class in torchbearer.callbacks.terminate_on_nan)

 	TEST_DATA (in module torchbearer.state)

 	TEST_GENERATOR (in module torchbearer.state)

 	TEST_STEPS (in module torchbearer.state)

 	TimerMetric (class in torchbearer.metrics.timer)

 	TIMINGS (in module torchbearer.state)

 	to() (torchbearer.trial.Trial method)

 	to_dict() (in module torchbearer.metrics.decorators)

 	to_file() (torchbearer.callbacks.imaging.imaging.ImagingCallback method)

 	(torchbearer.variational.visualisation.LatentWalker method)

 	to_key() (torchbearer.variational.visualisation.LatentWalker method)

 	to_pyplot() (torchbearer.callbacks.imaging.imaging.ImagingCallback method)

 	to_state() (torchbearer.callbacks.imaging.imaging.ImagingCallback method)

 	to_tensorboard() (torchbearer.callbacks.imaging.imaging.ImagingCallback method)

 	to_visdom() (torchbearer.callbacks.imaging.imaging.ImagingCallback method)

 	ToDict (class in torchbearer.metrics.wrappers)

 	TopKCategoricalAccuracy (class in torchbearer.metrics.primitives)

 	torchbearer (module)

 	torchbearer.callbacks (module)

 	torchbearer.callbacks.callbacks (module)

 	torchbearer.callbacks.checkpointers (module)

 	torchbearer.callbacks.csv_logger (module)

 	torchbearer.callbacks.decorators (module)

 	torchbearer.callbacks.early_stopping (module)

 	torchbearer.callbacks.gradient_clipping (module)

 	torchbearer.callbacks.imaging (module)

 	torchbearer.callbacks.imaging.imaging (module)

 	torchbearer.callbacks.imaging.inside_cnns (module)

 	torchbearer.callbacks.init (module)

 	torchbearer.callbacks.lr_finder (module)

 	
 	torchbearer.callbacks.printer (module)

 	torchbearer.callbacks.tensor_board (module)

 	torchbearer.callbacks.terminate_on_nan (module)

 	torchbearer.callbacks.torch_scheduler (module)

 	torchbearer.callbacks.weight_decay (module)

 	torchbearer.cv_utils (module)

 	torchbearer.metrics (module)

 	torchbearer.metrics.aggregators (module)

 	torchbearer.metrics.decorators (module)

 	torchbearer.metrics.default (module)

 	torchbearer.metrics.metrics (module)

 	torchbearer.metrics.primitives (module)

 	torchbearer.metrics.roc_auc_score (module)

 	torchbearer.metrics.timer (module)

 	torchbearer.metrics.wrappers (module)

 	torchbearer.state (module)

 	torchbearer.trial (module)

 	torchbearer.variational (module)

 	torchbearer.variational.auto_encoder (module)

 	torchbearer.variational.datasets (module)

 	torchbearer.variational.distributions (module)

 	torchbearer.variational.divergence (module)

 	torchbearer.variational.visualisation (module)

 	TorchScheduler (class in torchbearer.callbacks.torch_scheduler)

 	Tqdm (class in torchbearer.callbacks.printer)

 	train() (torchbearer.bases.Metric method)

 	(torchbearer.metrics.default.DefaultAccuracy method)

 	(torchbearer.metrics.metrics.AdvancedMetric method)

 	(torchbearer.metrics.metrics.MetricList method)

 	(torchbearer.metrics.metrics.MetricTree method)

 	(torchbearer.metrics.wrappers.ToDict method)

 	(torchbearer.trial.Trial method)

 	TRAIN_DATA (in module torchbearer.state)

 	TRAIN_GENERATOR (in module torchbearer.state)

 	TRAIN_STEPS (in module torchbearer.state)

 	train_valid_splitter() (in module torchbearer.cv_utils)

 	Trial (class in torchbearer.trial)

U

 	
 	update() (torchbearer.state.State method)

 	update_device_and_dtype() (in module torchbearer.trial)

 	
 	update_lrs() (torchbearer.callbacks.lr_finder.CyclicLR method)

 	update_time() (torchbearer.metrics.timer.TimerMetric method)

 	USE_INCOMING_SOCKET (torchbearer.callbacks.tensor_board.VisdomParams attribute)

V

 	
 	VALIDATION_DATA (in module torchbearer.state)

 	VALIDATION_GENERATOR (in module torchbearer.state)

 	VALIDATION_STEPS (in module torchbearer.state)

 	Var (class in torchbearer.metrics.aggregators)

 	var() (in module torchbearer.metrics.decorators)

 	variance (torchbearer.variational.distributions.SimpleDistribution attribute)

 	VERSION (in module torchbearer.state)

 	
 	vis() (torchbearer.variational.visualisation.CodePathWalker method)

 	(torchbearer.variational.visualisation.ImagePathWalker method)

 	(torchbearer.variational.visualisation.LatentWalker method)

 	(torchbearer.variational.visualisation.LinSpaceWalker method)

 	(torchbearer.variational.visualisation.RandomWalker method)

 	(torchbearer.variational.visualisation.ReconstructionViewer method)

 	VisdomParams (class in torchbearer.callbacks.tensor_board)

W

 	
 	WeightDecay (class in torchbearer.callbacks.weight_decay)

 	WeightInit (class in torchbearer.callbacks.init)

 	with_beta() (torchbearer.variational.divergence.DivergenceBase method)

 	with_closure() (torchbearer.trial.Trial method)

 	with_generators() (torchbearer.trial.Trial method)

 	with_handler() (torchbearer.callbacks.imaging.imaging.ImagingCallback method)

 	with_inf_train_loader() (torchbearer.trial.Trial method)

 	with_linear_capacity() (torchbearer.variational.divergence.DivergenceBase method)

 	with_post_function() (torchbearer.variational.divergence.DivergenceBase method)

 	
 	with_reduction() (torchbearer.variational.divergence.DivergenceBase method)

 	with_sum_mean_reduction() (torchbearer.variational.divergence.DivergenceBase method)

 	with_sum_sum_reduction() (torchbearer.variational.divergence.DivergenceBase method)

 	with_test_data() (torchbearer.trial.Trial method)

 	with_test_generator() (torchbearer.trial.Trial method)

 	with_train_data() (torchbearer.trial.Trial method)

 	with_train_generator() (torchbearer.trial.Trial method)

 	with_val_data() (torchbearer.trial.Trial method)

 	with_val_generator() (torchbearer.trial.Trial method)

X

 	
 	X (in module torchbearer.state)

 	
 	XavierNormal (class in torchbearer.callbacks.init)

 	XavierUniform (class in torchbearer.callbacks.init)

Y

 	
 	Y_PRED (in module torchbearer.state)

 	
 	Y_TRUE (in module torchbearer.state)

Z

 	
 	zero_grad() (torchbearer.trial.MockOptimizer method)

 	
 	ZeroBias (class in torchbearer.callbacks.init)

 _images/svm_fit.gif
0
s

2
1
05
10

1s 1o 05 00 o5 1o

20

_images/visdom_main.png
visdom | Environment Filter text

‘epoch-running_loss|

batch-running_acc batch-running_loss epoch-running_acc epoch-running_loss epoch-acc

running_acc
°
4
running_loss
running_acc
running_loss
o
@

1000 1000 1500

timestep timestep timestep timestep timestep

epoch-acc_std epoch-loss epoch-loss_std epoch-val_acc epoch-val_acc_std

loss_std

timestep timestep timestep timestep timestep
epoch-val_loss_si|

epoch-val_loss epoch-val_loss_std

_images/model_graph.png

_images/reconstruction_9.png

_static/comment-bright.png

_images/visdom_test.png
atch-running

batch-running_loss

timestep

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_images/epoch_metrics.png
TensorBoard SCALARS

‘Show data download links

Ignore outliers in chart scaling

Toolip sorting method: default

Smoothing

—® 06

Horizontal Axis

Runs

Write a regex to filter runs

O simpleModel_torchbearer

TOGGLE ALL RUNS

Q Filter tags (regular expressions supported)

epoch
epoch/ace epoch/ace_std
0950 0.480
0900 0440
0:850 0.400
0800 0.360
0750 0320
o700 0.280
0650
0240
epoch/unning_acc epoch/running_loss
0.950 Loo
0900 0.800
0850 o500
0.800
0750 0.400
0700 0200
0650 000
epoch/val_loss epoch/val_loss_std
200 0.400
160 0.300
120
0200
0.800
0.400 0.100
000 000

epoch/loss
100

0.800

0,600

0.400

0200

000

0675

0665

0655

0645

0635

epoch/loss_std

00050

0.0850

0.0750

0.0650

0.0550

0474

0470

0466

10

_images/gan.gif
;wy!f |
.fr.:..f, T.f.
.ngf?h_
J.!.iff.}_

_images/batch_metrics.png
TensorBoard SCALARS

batch/running_acc
‘Show data download links
Ignore outliers in chart scaling
0.800
Tooltip sorting method: default ~
0.750 N /\/*
Smoothing 0700 A S\

—® 06
0650

Horizontal Axis /\.
STEP. RELATIVE 0.550
0500
Runs
0450
Write a regex to fiter runs
O SimpleModel_torchbearer 07:3345 AN 07:3350 AM 07:3355 AM 07:34:00 AM 07:34:05 AV 07310 AM
August 10,2018
@ SimpleModel_torchbearer/epoch0 =
O SimpleModel_torchbearer/epoch-1 B
batch/running_loss
O simpleModel_torchbearer/epoch-2 h/running
O SimpleModel_torchbearer/epoch-3
150

O SimpleModel_torchbearer/epoch-4
() SimpleModel_torchbearer/epoch-5 140 \

O SimpleModel_torchbearer/epoch-5 120 _,.

O SimpleModel_torchbearer/epoch-7 .
100

O SimpleModel_torchbearer/epoch-8 N
S~
© S e e oo D B NS NI BN
0500
0.400
0.200
000
07:33:45 AM 07:33:50 AM 07:33:55 AM 07:34:00 AM 07:34:05 AM 07:34:10 AV

August 10, 2018

TOGGLE ALL RUNS

logs

_images/cup.png

_images/lemon.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to torchbearer’s documentation!

 		
 Using the Metric API

 		
 Default Keys

 		
 Metric Decorators

 		
 Lambda Metrics

 		
 Metric Output - to_dict

 		
 Data Flow - The Metric Tree

 		
 Serializing a Trial

 		
 Setting up a Mock Example

 		
 Reloading the Trial for More Epochs

 		
 Trying to Reload to a PyTorch Module

 		
 Robust Signature for Module

 		
 Source Code

 		
 Using the Tensorboard Callback

 		
 Setup

 		
 Logging the Model Graph

 		
 Logging Batch Metrics

 		
 Logging Epoch Metrics

 		
 Source Code

 		
 Logging to Visdom

 		
 Model Setup

 		
 Logging Epoch and Batch Metrics

 		
 Visdom Client Parameters

 		
 Source Code

 		
 Quickstart Guide

 		
 Defining the Model

 		
 Training on Cifar10

 		
 Source Code

 		
 Training a Variational Auto-Encoder

 		
 Defining the Model

 		
 Defining the Data

 		
 Defining the Loss

 		
 PyTorch method

 		
 Using Torchbearer State

 		
 Visualising Results

 		
 Training the Model

 		
 Source Code

 		
 Training a GAN

 		
 Data and Constants

 		
 Model

 		
 Loss

 		
 Metrics

 		
 Closures

 		
 Training

 		
 Visualising

 		
 Source Code

 		
 Visualising CNNs: The Class Appearance Model

 		
 Background

 		
 Loading the Model

 		
 Running with the Callback

 		
 Results

 		
 Source Code

 		
 Optimising functions

 		
 The Model

 		
 The Loss

 		
 Optimising

 		
 Viewing Progress

 		
 Source Code

 		
 Linear Support Vector Machine (SVM)

 		
 SVM Recap

 		
 Defining the Model

 		
 Creating Synthetic Data

 		
 Subgradient Descent

 		
 Visualizing the Training

 		
 Final Comments

 		
 Source Code

 		
 Breaking ADAM

 		
 Online Optimization

 		
 Stochastic Optimization

 		
 Conclusions

 		
 Source Code

 		
 torchbearer

 		
 Trial

 		
 State

 		
 Utilities

 		
 torchbearer.callbacks

 		
 Base Classes

 		
 Imaging

 		
 Main Classes

 		
 Deep Inside Convolutional Networks

 		
 Model Checkpointers

 		
 Logging

 		
 Tensorboard, Visdom and Others

 		
 Early Stopping

 		
 Gradient Clipping

 		
 Learning Rate Schedulers

 		
 Learning Rate Finders

 		
 Weight Decay

 		
 Weight / Bias Initialisation

 		
 Decorators

 		
 torchbearer.metrics

 		
 Base Classes

 		
 Decorators - The Decorator API

 		
 Metric Wrappers

 		
 Metric Aggregators

 		
 Base Metrics

 		
 Timer

 		
 torchbearer.variational

 		
 Distributions

 		
 Divergences

 		
 Auto-Encoding

 		
 Datasets

 		
 Visualisation

_images/ams_grad_online.png
1.20

0.800

0.400

0.00

-0.400

-0.800

-1.20

_static/file.png

_images/ams_grad_stochastic.png
1.00

0.600

0.200

-0.200

-0.600

-1.00

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/img/172400.png
~roed N
O N b~ o
7 -l O
VFT ™
L N7 RN

_static/img/ams_grad_online.png
1.20

0.800

0.400

0.00

-0.400

-0.800

-1.20

_static/img/ams_grad_stochastic.png
1.00

0.600

0.200

-0.200

-0.600

-1.00

_static/img/epoch_metrics.png
TensorBoard SCALARS

‘Show data download links

Ignore outliers in chart scaling

Toolip sorting method: default

Smoothing

—® 06

Horizontal Axis

Runs

Write a regex to filter runs

O simpleModel_torchbearer

TOGGLE ALL RUNS

Q Filter tags (regular expressions supported)

epoch
epoch/ace epoch/ace_std
0950 0.480
0900 0440
0:850 0.400
0800 0.360
0750 0320
o700 0.280
0650
0240
epoch/unning_acc epoch/running_loss
0.950 Loo
0900 0.800
0850 o500
0.800
0750 0.400
0700 0200
0650 000
epoch/val_loss epoch/val_loss_std
200 0.400
160 0.300
120
0200
0.800
0.400 0.100
000 000

epoch/loss
100

0.800

0,600

0.400

0200

000

0675

0665

0655

0645

0635

epoch/loss_std

00050

0.0850

0.0750

0.0650

0.0550

0474

0470

0466

10

_static/img/gan.gif
;wy!f |
.fr.:..f, T.f.
.ngf?h_
J.!.iff.}_

_static/img/batch_metrics.png
TensorBoard SCALARS

batch/running_acc
‘Show data download links
Ignore outliers in chart scaling
0.800
Tooltip sorting method: default ~
0.750 N /\/*
Smoothing 0700 A S\

—® 06
0650

Horizontal Axis /\.
STEP. RELATIVE 0.550
0500
Runs
0450
Write a regex to fiter runs
O SimpleModel_torchbearer 07:3345 AN 07:3350 AM 07:3355 AM 07:34:00 AM 07:34:05 AV 07310 AM
August 10,2018
@ SimpleModel_torchbearer/epoch0 =
O SimpleModel_torchbearer/epoch-1 B
batch/running_loss
O simpleModel_torchbearer/epoch-2 h/running
O SimpleModel_torchbearer/epoch-3
150

O SimpleModel_torchbearer/epoch-4
() SimpleModel_torchbearer/epoch-5 140 \

O SimpleModel_torchbearer/epoch-5 120 _,.

O SimpleModel_torchbearer/epoch-7 .
100

O SimpleModel_torchbearer/epoch-8 N
S~
© S e e oo D B NS NI BN
0500
0.400
0.200
000
07:33:45 AM 07:33:50 AM 07:33:55 AM 07:34:00 AM 07:34:05 AM 07:34:10 AV

August 10, 2018

TOGGLE ALL RUNS

logs

_static/img/cup.png

_static/img/lemon.png

_static/img/reconstruction_9.png

_static/img/svm_fit.gif
0
s

2
1
05
10

1s 1o 05 00 o5 1o

20

_static/img/model_graph.png

_static/img/visdom_main.png
visdom | Environment Filter text

‘epoch-running_loss|

batch-running_acc batch-running_loss epoch-running_acc epoch-running_loss epoch-acc

running_acc
°
4
running_loss
running_acc
running_loss
o
@

1000 1000 1500

timestep timestep timestep timestep timestep

epoch-acc_std epoch-loss epoch-loss_std epoch-val_acc epoch-val_acc_std

loss_std

timestep timestep timestep timestep timestep
epoch-val_loss_si|

epoch-val_loss epoch-val_loss_std

_static/img/visdom_test.png
atch-running

batch-running_loss

timestep

