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CHAPTER 1

Using the Metric API

There are a few levels of complexity to the metric API. You’ve probably already seen keys such as ‘acc’ and ‘loss’
can be used to reference pre-built metrics, so we’ll have a look at how these get mapped ‘under the hood’. We’ll also
take a look at how the metric decorator APT can be used to construct powerful metrics which report running and
terminal statistics. Finally, we’ll take a closer look at the MetricTree and MetricList which make all of this
happen internally.

1.1 Default Keys

In typical usage of torchbearer, we rarely interface directly with the metric API, instead just providing keys
to the Model such as ‘acc’ and ‘loss’. These keys are managed in a dict maintained by the decorator
default_for key (key). Inside the torchbearer model, metrics are stored in an instance of MetricList,
which is a wrapper that calls each metric in turn, collecting the results in a dict. If MetricList is given a string,
it will look up the metric in the default metrics dict and use that instead. If you have defined a class that implements
Met ric and simply want to refer to it with a key, decorate it with default_for _key ().

1.2 Metric Decorators

Now that we have explained some of the basic aspects of the metric API, lets have a look at an example:

@metrics.default_for_key('acc')
@metrics.default_for_key('accuracy')
@metrics.running_mean
@metrics.std
@metrics.mean
class CategoricalAccuracyFactory (metrics.MetricFactory) :
def build(self):
return CategoricalAccuracy ()

This is the definition of the default accuracy metric in torchbearer, let’s break it down.
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CategoricalAccuracyFactory is a MetricFactory which simply returns a CategoricalAccuracy
instance on build. We don’t need to do this, the decorators can simply take a Met i c implementation, however, for
torchbearer we wanted to keep the CategoricalAccuracy class clean so that it could still be used in cases where
running means are not desirable.

mean (), std () and running_mean () are all decorators which collect statistics about the underlying metric.
CategoricalAccuracy simply returns a boolean tensor with an entry for each item in a batch. The mean () and
std () decorators will take a mean / standard deviation value over the whole epoch (by keeping a sum and a number
of values). The running mean () will collect a rolling mean for a given window size. That is, the running mean is
only computed over the last 50 batches by default (however, this can be changed to suit your needs). Running metrics
also have a step size, designed to reduce the need for constant computation when not a lot is changing. The default
value of 10 means that the running mean is only updated every 10 batches.

Finally, the default_for._key () decorator is used to bind the metric to the keys ‘acc’ and ‘accuracy’.

1.2.1 Lambda Metrics

One decorator we haven’t covered is the lambda_metric (). This decorator allows you to decorate a function
instead of a class. Here’s another possible definition of the accuracy metric which uses a function:

@metrics.default_for key('acc')
@metrics.running mean
@metrics.std
@metrics.mean
@metrics.lambda _metric('acc', on_epoch=False)
def categorical_accuracy (y_pred, y_true):

_, y_pred = torch.max(y_pred, 1)

return (y_pred == y_true).float ()

The 1ambda_metric () here converts the function into a Met ricFactory. This can then be used in the normal
way. By default and in our example, the lambda metric will execute the function with each batch of output (y_pred,
y_true). If we set on_epoch=True, the decorator will use an EpochLambda instead of a BatchLambda. The
EpochLambda collects the data over a whole epoch and then executes the metric at the end.

1.2.2 Metric Output - to_dict

At the root level, torchbearer expects metrics to output a dictionary which maps the metric name to the value. Clearly,
this is not done in our accuracy function above as the aggregators expect input as numbers / tensors instead of dic-
tionaries. We could change this and just have everything return a dictionary but then we would be unable to tell the
difference between metrics we wish to display / log and intermediate stages (like the tensor output in our example
above). Instead then, we have the to_dict () decorator. This decorator is used to wrap the output of a metric in a
dictionary so that it will be picked up by the loggers. The aggregators all do this internally (with ‘running_’, ‘_std’,
etc. added to the name) so there’s no need there, however, in case you have a metric that outputs precisely the correct
value, the to_dict () decorator can make things a little easier.

1.3 Data Flow - The Metric Tree

Ok, so we’ve covered the decorator API and have seen how to implement all but the most complex metrics
in torchbearer. Each of the decorators described above can be easily associated with one of the metric aggregator
or wrapper classes so we won’t go into that any further. Instead we’ll just briefly explain the MetricTree. The
MetricTreeis a very simple tree implementation which has a root and some children. Each child could be another
tree and so this supports trees of arbitrary depth. The main motivation of the metric tree is to co-ordinate data flow

2 Chapter 1. Using the Metric API
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from some root metric (like our accuracy above) to a series of leaves (mean, std, etc.). When Metric.process ()
is called on a Met ricTree, the output of the call from the root is given to each of the children in turn. The results
from the children are then collected in a dictionary. The main reason for including this was to enable encapsulation
of the different statistics without each one needing to compute the underlying metric individually. In theory the
MetricTree means that vastly complex metrics could be computed for specific use cases, although I can’t think of
any right now. ..

1.3. Data Flow - The Metric Tree 3
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CHAPTER 2

Quickstart Guide

This guide will give a quick intro to training PyTorch models with torchbearer. We’ll start by loading in some data and
defining a model, then we’ll train it for a few epochs and see how well it does.

2.1 Defining the Model

Let’s get using torchbearer. Here’s some data from Cifar10 and a simple 3 layer strided CNN:

BATCH_SIZE = 128

normalize = transforms.Normalize (mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])

dataset = torchvision.datasets.CIFAR1O (root='./data/cifar', train=True, download=True,
transform=transforms.Compose ([transforms.

—ToTensor (), normalizel]))

splitter = DatasetValidationSplitter (len(dataset), 0.1)

trainset = splitter.get_train_dataset (dataset)

valset = splitter.get_val_dataset (dataset)

traingen = torch.utils.data.Dataloader (trainset, pin_memory=True, batch_size=BATCH_
—SIZE, shuffle=True, num_workers=10)

valgen = torch.utils.data.Dataloader (valset, pin_memory=True, batch_size=BATCH_SIZE,
—shuffle=True, num_workers=10)

testset = torchvision.datasets.CIFAR1O (root="'./data/cifar', train=False,
—download=True,

transform=transforms.Compose ([transforms.
—ToTensor (), normalizel]))
testgen = torch.utils.data.Dataloader (testset, pin_memory=True, batch_size=BATCH_SIZE,
— shuffle=False, num_workers=10)

(continues on next page)
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class SimpleModel (nn.Module) :
def _ init_ (self):

super (SimpleModel, self).__init__ ()

self.convs = nn.Sequential (
nn.Conv2d (3, 16, stride=2, kernel_size=3),
nn.BatchNorm2d (16),
nn.RelLU(),
nn.Conv2d (16, 32, stride=2, kernel_size=3),
nn.BatchNorm2d (32),
nn.RelLU(),
nn.Conv2d (32, 64, stride=2, kernel_size=3),
nn.BatchNorm2d (64),
nn.RelLU ()

self.classifier = nn.Linear (576, 10)
def forward(self, x):
x = self.convs(x)

X = x.view(-1, 576)
return self.classifier (x)

model = SimpleModel ()

Note that we use torchbearers DatasetValidationSplitter here to create a validation set (10% of the data).
This is essential to avoid over-fitting to your test data.

2.2 Training on Cifar10

Typically we would need a training loop and a series of calls to backward, step etc. Instead, with torchbearer, we can
define our optimiser and some metrics (just ‘acc’ and ‘loss’ for now) and let it do the work.

optimizer = optim.Adam(filter (lambda p: p.requires_grad, model.parameters()), lr=0.
—001)
loss = nn.CrossEntropyLoss ()

from torchbearer import Model

torchbearer_model = Model (model, optimizer, loss, metrics=['acc', 'loss']).to('cuda')
torchbearer_model.fit_generator (traingen, epochs=10, validation_generator=valgen)

torchbearer_model.evaluate_generator (testgen)

Running the above produces the following output:

Files already downloaded and verified

Files already downloaded and verified

0/10(t): 100%|| 352/352 [00:01<00:00, 233.36it/s, running_acc=0.536, running_loss=1.

32, acc=0.459, acc_std=0.498, loss=1.52, loss_std=0.239]

0/10(v): 100%|| 40/40 [00:00<00:00, 239.40it/s, wval_acc=0.536, val_acc_std=0.499, val_

—~loss=1.29, val_loss_std=0.0731]

1/10(t): 100%|| 352/352 [00:01<00:00, 211.19it/s, running_acc=0.599, running_loss=1.
13, acc=0.578, acc_std=0.494, loss=1.18, loss_std=0.096]

(continues on next page)
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1/10(v): 100%|| 40/40 [00:00<00:00, 232.97it/s, val_acc=0.594, val_acc_std=0.491, val_
—loss=1.14, val_loss_std=0.101]

2/10(t): 100%|| 352/352 [00:01<00:00, 216.68it/s, running_acc=0.636, running_loss=1.
04, acc=0.631, acc_std=0.482, loss=1.04, loss_std=0.0944]

2/10(v): 100%|| 40/40 [00:00<00:00, 210.73it/s, val_acc=0.626, val_acc_std=0.484, val_
—~loss=1.07, val_loss_std=0.0974]

3/10(t): 100%|| 352/352 [00:01<00:00, 190.88it/s, running_acc=0.671, running_loss=0.
929, acc=0.664, acc_std=0.472, loss=0.957, loss_std=0.0929]

3/10(v): 100%|| 40/40 [00:00<00:00, 221.79it/s, val_acc=0.639, val_acc_std=0.48, val_
—~loss=1.02, val_loss_std=0.103]

4/10(t): 100%|| 352/352 [00:01<00:00, 212.43it/s, running_acc=0.685, running_loss=0.
897, acc=0.689, acc_std=0.463, loss=0.891, loss_std=0.0888]

4/10(v): 100%|| 40/40 [00:00<00:00, 249.99it/s, val_acc=0.655, val_acc_std=0.475, val_
—1loss=0.983, val_loss_std=0.113]

5/10(t): 100%|| 352/352 [00:01<00:00, 209.45it/s, running_acc=0.711, running_loss=0.
835, acc=0.706, acc_std=0.456, loss=0.844, loss_std=0.088]

5/10(v): 100%|| 40/40 [00:00<00:00, 240.80it/s, val_acc=0.648, val_acc_std=0.477, val_
—~1loss=0.965, val_loss_std=0.107]

6/10(t): 100%|| 352/352 [00:01<00:00, 216.89it/s, running_acc=0.713, running_loss=0.
826, acc=0.72, acc_std=0.449, loss=0.802, loss_std=0.0903]

6/10(v): 100%|| 40/40 [00:00<00:00, 238.17it/s, val_acc=0.655, val_acc_std=0.475, val_
—~1oss=0.97, val_loss_std=0.0997]

7/10(t): 100%|| 352/352 [00:01<00:00, 213.82it/s, running_acc=0.737, running_loss=0.
773, acc=0.734, acc_std=0.442, loss=0.765, loss_std=0.0878]

7/10(v): 100%|| 40/40 [00:00<00:00, 202.45it/s, val_acc=0.677, val_acc_std=0.468, val_
—1loss=0.936, val_loss_std=0.0985]

8/10(t): 100%|| 352/352 [00:01<00:00, 211.36it/s, running_acc=0.732, running_loss=0.
744, acc=0.746, acc_std=0.435, loss=0.728, loss_std=0.0902]

8/10(v): 100%|| 40/40 [00:00<00:00, 204.52it/s, val_acc=0.674, val_acc_std=0.469, val_
—~10ss=0.949, wval_loss_std=0.124]

9/10(t): 100%|| 352/352 [00:01<00:00, 215.76it/s, running_acc=0.741, running_loss=0.
735, acc=0.754, acc_std=0.431, loss=0.703, loss_std=0.0897]

9/10(v): 100%|| 40/40 [00:00<00:00, 222.72it/s, val_acc=0.68, val_acc_std=0.466, val_
—1oss=0.948, val_loss_std=0.181]

0/1(e): 100%|| 79/79 [00:00<00:00, 268.70it/s, val_acc=0.678, val_acc_std=0.467, val_
—~1loss=0.925, val_loss_std=0.109]

2.3 Source Code

The source code for the example is given below:

Download Python source code: quickstart.py

2.3. Source Code 7
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CHAPTER 3

Training a Variational Auto-Encoder

This guide will give a quick guide on training a variational auto-encoder (VAE) in torchbearer. We will use the VAE
example from the pytorch examples here:

3.1 Defining the Model

We shall first copy the VAE example model.

class VAE (nn.Module) :
def _ init_ (self):
super (VAE, self).__init__ ()

self.fcl = nn.Linear (784, 400)
self.fc21 = nn.Linear (400, 20)
self.fc22 = nn.Linear (400, 20)
self.fc3 = nn.Linear (20, 400)
self.fcd4d = nn.Linear (400, 784)

def encode (self, x):
hl = F.relu(self.fcl (x))
return self.fc21(hl), self.fc22(hl)

def reparameterize(self, mu, logvar):
if self.training:
std = torch.exp(0.5xlogvar)
eps = torch.randn_like (std)
return eps.mul (std) .add_ (mu)
else:
return mu

def decode (self, z):
h3 = F.relu(self.fc3(z))
return F.sigmoid(self.fc4 (h3))

(continues on next page)
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def forward(self, x):
mu, logvar = self.encode(x.view (-1, 784))
z = self.reparameterize (mu, logvar)
return self.decode(z), mu, logvar

3.2 Defining the Data

We get the MNIST dataset from torchvision and transform them to torch tensors.

BATCH_SIZE = 128
normalize = transforms.Compose ([transforms.ToTensor ()])
# Define standard classification mnist dataset

basetrainset = torchvision.datasets.MNIST('./data/mnist', train=True, download=True,
—transform=normalize)

basetestset = torchvision.datasets.MNIST('./data/mnist', train=False, download=True,
—~transform=normalize)

The output label from this dataset is the classification label, since we are doing a auto-encoding problem, we wish the
label to be the original image. To fix this we create a wrapper class which replaces the classification label with the
image.

class AutoEncoderMNIST (Dataset) :
def _ init_ (self, mnist_dataset):
super () .__init__ ()
self.mnist_dataset = mnist_dataset

def _ _getitem__ (self, index):
character, label = self.mnist_dataset.__getitem__ (index)
return character, character

def len_ (self):

return len(self.mnist_dataset)

We then wrap the original datasets and create training and testing data generators in the standard pytorch way.

# Wrap base classification mnist dataset to return the image as the target
trainset = AutoEncoderMNIST (basetrainset)
testset = AutoEncoderMNIST (basetestset)

traingen = torch.utils.data.DatalLoader (trainset, batch_size=BATCH_SIZE, shuffle=True,
—num_workers=8)

testgen = torch.utils.data.DatalLoader (testset, batch_size=BATCH_SIZE, shuffle=True,
—num_workers=8)

10 Chapter 3. Training a Variational Auto-Encoder
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3.3 Defining the Loss

Now we have the model and data, we will need a loss function to optimize. VAEs typically take the sum of a recon-
struction loss and a KL-divergence loss to form the final loss value.

def bce_loss(y_pred, y_true):
BCE = F.binary_cross_entropy(y_pred, y_true.view(-1, 784), size_average=False)
return BCE

def kld_Loss (mu, logvar):
KILD = -0.5 % torch.sum(l + logvar — mu.pow(2) — logvar.exp())
return KLD

There are two ways this can be done in torchbearer - one is very similar to the PyTorch example method and the other
utilises the torchbearer state.

3.3.1 PyTorch method

The loss function slightly modified from the PyTorch example is:

def loss_function(y_pred, y_true):
recon_x, mu, logvar = y_pred
X = y_true
BCE = bce_loss (recon_x, X)

KLD = kld_Loss (mu, logvar)

return BCE + KLD

This requires the packing of the reconstruction, mean and log-variance into the model output and unpacking it for the
loss function to use.

def forward(self, x):
mu, logvar = self.encode(x.view(-1, 784))
z = self.reparameterize (mu, logvar)
return self.decode(z), mu, logvar

3.3.2 Using Torchbearer State
Instead of having to pack and unpack the mean and variance in the forward pass, in torchbearer there is a persistent
state dictionary which can be used to conveniently hold such intermediate tensors.

By default the model forward pass does not have access to the state dictionary, but setting the pass_state flag to
true in the fit_generator call gives the model access to state on forward.

torchbearer_model.fit_generator (traingen, epochs=10, validation_generator=testgen,
callbacks=[add_kld_loss_callback, save_reconstruction_
—callback ()], pass_state=True)

We can then modify the model forward pass to store the mean and log-variance under suitable keys.

3.3. Defining the Loss 11
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def forward(self, x, state):

mu, logvar = self.encode(x.view(-1, 784))
z = self.reparameterize (mu, logvar)
state['mu'] = mu

state['logvar'] = logvar

return self.decode(z)

The reconstruction loss is a standard loss taking network output and the true label

loss = bce_loss

Since loss functions cannot access state, we utilise a simple callback to combine the kld loss which does not act on
network output or true label.

@torchbearer.callbacks.add to_loss

def add_kld_loss_callback (state):
KLD = kld_Loss (state['mu'], state['logvar'])
return KLD

3.4 Visualising Results

For auto-encoding problems it is often useful to visualise the reconstructions. We can do this in torchbearer by using
another simple callback. We stack the first 8 images from the first validation batch and pass them to torchvisions
save_image function which saves out visualisations.

def save_reconstruction_callback (num_images=8, folder='results/'):
import os
os.makedirs (os.path.dirname (folder), exist_ok=True)

@torchbearer.callbacks.on_step_validation
def saver(state):

if state[torchbearer.BATCH] == 0:
data = state[torchbearer.X]
recon_patch = state[torchbearer.Y PRED]
comparison = torch.cat ([datal[:num_images],

recon_pbatch.view (128, 1, 28, 28) [:num_images]])
save_image (comparison.cpu(),
str(folder) + 'reconstruction ' + str(state[torchbearer.
—EPOCH]) + '.png', nrow=num_images)
return saver

3.5 Training the Model

We train the model by creating a torchmodel and a torchbearermodel and calling fit_generator.

model = VAE ()

optimizer = optim.Adam(filter (lambda p: p.requires_grad, model.parameters()), lr=0.
—001)

loss = bce_loss

from torchbearer import Model

(continues on next page)
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torchbearer_model = Model (model, optimizer, loss, metrics=['loss']).to('cuda')
torchbearer_model.fit_generator (traingen, epochs=10, validation_generator=testgen,

callbacks=[add_kld_loss_callback, save_reconstruction_
—callback ()], pass_state=True)

The visualised results after ten epochs then look like this:

> & |

6 9
581 69

3.6 Source Code

7 9 2
79 2

The source code for the example are given below:
Standard:

Download Python source code: vae_standard.py
Using state:

Download Python source code: vae.py

3.6. Source Code 13




torchbearer Documentation, Release 0.1.5

14 Chapter 3. Training a Variational Auto-Encoder



CHAPTER 4

Training a GAN

We shall try to implement something more complicated using torchbearer - a Generative Adverserial Network (GAN).
This tutorial is a modified version of the GAN from the brilliant collection of GAN implementations PyTorch_ GAN
by eriklindernoren on github.

4.1 Data and Constants

We first define all constants for the example.

epochs = 200
batch_size = 64

lr = 0.0002

nworkers = 8

latent_dim = 100

sample_interval = 400

img_shape = (1, 28, 28)

adversarial_loss = torch.nn.BCELoss ()

device = 'cuda'

valid = torch.ones (batch_size, 1, device=device)

fake = torch.zeros (batch_size, 1, device=device)

We then define a number of state keys for convenience. This is optional, however, it automatically avoids key conflicts.

GEN_IMGS = state_key('gen_imgs")
DISC_GEN = state_key('disc_gen'")
DISC_GEN_DET = state_key('disc_gen_det")
DISC_REAL state_key ('disc_real')
G_LOSS = state_key('g_loss")

D_LOSS = state_key('d_loss")

We then define the dataset and dataloader - for this example, MNIST.

15
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transform = transforms.Compose ([
transforms.ToTensor (),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
1)

dataset = datasets.MNIST('./data/mnist', train=True, download=True,
—transform=transform)

dataloader = torch.utils.data.DatalLoader (dataset, batch_size=batch_size, shuffle=True,
— drop_last=True)

4.2 Model

We use the generator and discriminator from PyTorch_ GAN and combine them into a model that performs a single
forward pass.

class GAN (nn.Module) :
def _ init_ (self):
super () .__init__ ()
self.discriminator = Discriminator ()
self.generator = Generator()

def forward(self, real_imgs, state):
# Generator Forward
z = Variable (torch.Tensor (np.random.normal (0, 1, (real_imgs.shapel[0O], latent_
—dim)))) .to(state[tb.DEVICE])
state [GEN_IMGS] = self.generator(z)
state[DISC_GEN] = self.discriminator (state[GEN_IMGS])
# We don't want to keep discriminator gradients on the generator forward pass
self.discriminator.zero_grad()

# Discriminator Forward
state[DISC_GEN_DET] = self.discriminator (state[GEN_IMGS] .detach())
state[DISC_REAL] = self.discriminator (real_imgs)

Note that we have to be careful to remove the gradient information from the discriminator after doing the generator
forward pass.

4.3 Loss

Since our loss is complicated in this example, we shall forgo the basic loss criterion used in normal torchbearer models.

def zero_loss(y_pred, y_true):
return torch.zeros (y_true.shape[0], 1)

Instead use a callback to provide the loss. Since this callback is very simple we can use callback decorators on a
function (which takes state) to tell torchbearer when it should be called.

@callbacks.on_criterion

def loss_callback (state) :
fake_loss = adversarial_loss(state[DISC_GEN_DET], fake)
real_loss = adversarial_loss(state[DISC_REAL], wvalid)

(continues on next page)
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state[G_LOSS] = adversarial_loss (state[DISC_GEN], valid)

state[D_LOSS] = (real_loss + fake_loss) / 2
# This is the loss that backward is called on.
state[tb.LOSS] = state[G_LOSS] + state[D_LOSS]

Note that we have summed the separate discriminator and generator losses since their graphs are separated, this is
allowable.

4.4 Metrics

We would like to follow the discriminator and generator losses during training - note that we added these to state
during the model definition. We can then create metrics from these by decorating simple state fetcher metrics.

@tb.metrics.running _mean
@tb.metrics.mean
class g _loss(tb.metrics.Metric):
def _ init__ (self):
super () .__init__ (G_LOSS)

def process(self, state):
return state[G_LOSS]

4.5 Training

We can then train the torchbearer model on the GPU in the standard way.

torchbearermodel = tb.Model (model, optim, zero_loss, ['loss', g_loss(), d_loss()])
torchbearermodel.to (device)

torchbearermodel.fit_generator (dataloader, epochs=200, pass_state=True,
—callbacks=[loss_callback, saver_callback])

4.6 Visualising

We borrow the image saving method from PyTorch_ GAN and put it in a call back to save on training step - again using
decorators.

@callbacks.on_step_training
def saver_callback (state):
batches_done = state[tb.EPOCH] * len(state[tb.GENERATOR]) + state[tb.BATCH]
if batches_done % sample_interval ==
save_image (state[GEN_IMGS] .data[:25], 'images/%d.png' % batches_done, nrow=5,
—normalize=True)

After 172400 iterations we see the following.

4.7 Source Code

The source code for the example is given below:

4.4. Metrics 17
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Download Python source code: gan.py
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CHAPTER B

Optimising functions

Now for something a bit different. PyTorch is a tensor processing library and whilst it has a focus on neural networks,
it can also be used for more standard funciton optimisation. In this example we will use torchbearer to minimise a

simple function.

5.1 The Model

First we will need to create something that looks very similar to a neural network model - but with the purpose of
minimising our function. We store the current estimates for the minimum as parameters in the model (so PyTorch
optimisers can find and optimise them) and we return the function value in the forward method.

class Net (Module) :
def _ init_ (self, x):

super () .__init__ ()
self.pars = torch.nn.Parameter (x)
def f (self):

mn

function to be minimised:

f(x) = (x[0]-5)"2 + x[1]"2 + (x[2]-1)"2
Solution:

x = [5,0,1]

mon

out = torch.zeros_like(self.pars)
out [0] = self.pars[0]-5

out[1] = self.pars[1l]

out[2] = self.pars[2]-1

return torch.sum(out**2)

def forward(self, _, state):
state['est'] = self.pars
return self.f ()
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5.2 The Loss

For function minimisation we have an analogue to neural network losses - we minimise the value of the function under
the current estimates of the minimum. Note that as we are using a base loss, torchbearer passes this the network output
and the “label” (which is of no use here).

def loss(y_pred, y_true):
return y_pred

5.3 Optimising

We need two more things before we can start optimising with torchbearer. We need our initial guess - which we’ve
set to [2.0, 1.0, 10.0] and we need to tell torchbearer how “long” an epoch is - I.e. how many optimisation steps
we want for each epoch. For our simple function, we can complete the optimisation in a single epoch, but for more
complex optimisations we might want to take multiple epochs and include tensorboard logging and perhaps learning
rate annealing to find a final solution. We have set the number of optimisation steps for this example as 50000.

steps = torch.tensor (list (range (50000)))
p = torch.tensor([2.0, 1.0, 10.07)

The learning rate chosen for this example is very low and we could get convergence much faster with a larger rate,
however this allows us to view convergence in real time. We define the model and optimiser in the standard way.

model = Net (p)
optim = torch.optim.SGD (model.parameters (), lr=0.0001)

Finally we start the optimising (giving as “data” and “targets” the number of steps desired) and print the final minimum
estimate.

tbmodel = tb.Model (model, optim, loss, [est(), 'loss'])
tbmodel.fit (steps, steps, 1, pass_state=True)
print (list (model.parameters()) [0] .data)

Note that we could use targets that are meaningful as they are given to the loss function, however this is not done for
this example.

5.4 Viewing Progress

You might have noticed in the previous snippet that the example uses a metric we’ve not seen before. This simple
metric is used to display the estimate throughout the optimisation process - although this is probably only useful for
very small optimisation problems.

@tb.metrics.to_dict
class est (tb.metrics.Metric):
def _ init_ (self):
super () .__init__ ('est")

def process(self, state):
return state['est'].data

The final estimate is very close to our desired minimum at [5, 0, 1]:

tensor([ 4.9988e+00, 4.5355¢e-05, 1.0004e+00])

20 Chapter 5. Optimising functions




CHAPTER O

torchbearer

class torchbearer.torchbearer.Model (model, optimizer, loss_criterion, metrics=[])
Torchbearermodel to wrap base torch model and provide training environment around it

cpu ()
Moves all model parameters and buffers to the CPU.

Returns Self torchbearermodel
Return type Model

cuda (device=None)
Moves all model parameters and buffers to the GPU.

Parameters device (int, optional) - if specified, all parameters will be copied to that
device

Returns Self torchbearermodel
Return type Model

eval ()
Set model and metrics to evaluation mode

evaluate (x=None, y=None, batch_size=32, verbose=1, steps=None, pass_state=False)
Perform an evaluation loop on given data and label tensors to evaluate metrics

Parameters
* x (torch. Tensor) — The input data tensor
* y(torch. Tensor) — The target labels for data tensor x

* batch_size (int) — The mini-batch size (number of samples processed for a single
weight update)

* verbose (int) - If 1 use tqdm progress frontend, else display no training progress

* steps (int)— The number of evaluation mini-batches to run
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pass_state (bool) — If True the state dictionary is passed to the torch model forward
method, if False only the input data is passed

Returns The dictionary containing final metrics

Return type dict[str,any]

evaluate_generator (generator, verbose=1, steps=None, pass_state=False)
Perform an evaluation loop on given data generator to evaluate metrics

Parameters

generator (DataLoader) — The evaluation data generator (usually a pytorch Dat-
alLoader)

verbose (int) - If 1 use tqdm progress frontend, else display no training progress
steps (int)— The number of evaluation mini-batches to run

pass_state (bool) — If True the state dictionary is passed to the torch model forward
method, if False only the input data is passed

Returns The dictionary containing final metrics

Return type dict[str,any]

fit (x, y, batch_size=None, epochs=1, verbose=1, callbacks=[], validation_split=None, valida-
tion_data=None, shuffle=True, initial_epoch=0, steps_per_epoch=None, validation_steps=None,

workers=1, pass_state=False)
Perform fitting of a model to given data and label tensors

Parameters

x (torch. Tensor) — The input data tensor
y (torch. Tensor) — The target labels for data tensor x

batch_size (int) — The mini-batch size (number of samples processed for a single
weight update)

epochs (int) — The number of training epochs to be run (each sample from the dataset
is viewed exactly once)

verbose (int) - If 1 use tqdm progress frontend, else display no training progress

callbacks (1ist) — The list of torchbearer callbacks to be called during training and
validation

validation_split (float) — Fraction of the training dataset to be set aside for
validation testing

validation_data ((torch.Tensor, torch.Tensor)) — Optional validation
data tensor

shuffle (bool) — If True mini-batches of training/validation data are randomly se-
lected, if False mini-batches samples are selected in order defined by dataset

initial_epoch (int) — The integer value representing the first epoch - useful for
continuing training after a number of epochs

steps_per_epoch (int)— The number of training mini-batches to run per epoch
validation_steps (int)— The number of validation mini-batches to run per epoch

workers (int)— The number of cpu workers devoted to batch loading and aggregating
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* pass_state (bool) - If True the state dictionary is passed to the torch model forward
method, if False only the input data is passed

Returns The final state context dictionary
Return type dict[str,any]

fit_generator (generator, train_steps=None, epochs=1, verbose=1, callbacks=[], valida-

tion_generator=None, validation_steps=None, initial_epoch=0, pass_state=False)
Perform fitting of a model to given data generator

Parameters

* generator (DataLoader) — The training data generator (usually a pytorch Dat-
alLoader)

* train_steps (int)— The number of training mini-batches to run per epoch

* epochs (int) — The number of training epochs to be run (each sample from the dataset
is viewed exactly once)

* verbose (int) - If 1 use tqdm progress frontend, else display no training progress

* callbacks (1ist)— The list of torchbearer callbacks to be called during training and
validation

* validation_generator (DataLoader) — The validation data generator (usually a
pytorch Datal.oader)

* validation_steps (int)— The number of validation mini-batches to run per epoch

* initial_ epoch (int) — The integer value representing the first epoch - useful for
continuing training after a number of epochs

* pass_state (bool) - If True the state dictionary is passed to the torch model forward
method, if False only the input data is passed

Returns The final state context dictionary
Return type dict[str,any]

load_state_dict (state_dict, **kwargs)
Copies parameters and buffers from state_dict () into this module and its descendants.

Parameters
* state_dict (dict)— A dict containing parameters and persistent buffers.
* kwargs — See: torch.nn.Module.load_state_dict

predict (x=None, batch_size=32, verbose=1, steps=None, pass_state=False)
Perform a prediction loop on given data tensor to predict labels

Parameters
* x (torch. Tensor)— The input data tensor

* batch_size (int) — The mini-batch size (number of samples processed for a single
weight update)

* verbose (int)—If 1 use tqdm progress frontend, else display no training progress
* steps (int)— The number of evaluation mini-batches to run

* pass_state (bool) - If True the state dictionary is passed to the torch model forward
method, if False only the input data is passed

Returns Tensor of final predicted labels
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Return type torch.Tensor

predict_generator (generator, verbose=1, steps=None, pass_state=False)
Perform a prediction loop on given data generator to predict labels

Parameters

* generator (DataLoader) — The prediction data generator (usually a pytorch Dat-
alLoader)

* verbose (int)—If 1 use tqdm progress frontend, else display no training progress
¢ steps (int)— The number of evaluation mini-batches to run

* pass_state (bool) - If True the state dictionary is passed to the torch model forward
method, if False only the input data is passed

Returns Tensor of final predicted labels
Return type torch.Tensor

state_dict (**kwargs)
Parameters kwargs — See: torch.nn.Module.state_dict
Returns A dict containing parameters and persistent buffers.
Return type dict

to (*args, **kwargs)
Moves and/or casts the parameters and buffers.

Parameters

e args — See: torch.nn.Module.to

* kwargs — See: torch.nn.Module.to
Returns Self torchbearermodel
Return type Model

train()
Set model and metrics to training mode

torchbearer.state.state_key (key)

class torchbearer.cv_utils.DatasetValidationSplitter (dataset len, split_fraction,
shuffle_seed=None)

get_train_dataset (dataset)
Creates a training dataset from existing dataset

Parameters dataset (torch.utils.data.Dataset)—Datasetto be splitinto a training
dataset

Returns Training dataset split from whole dataset
Return type torch.utils.data.Dataset

get_val_dataset (dataset)
Creates a validation dataset from existing dataset

Parameters dataset (torch.utils.data.Dataset)— Dataset to be split into a valida-
tion dataset

Returns Validation dataset split from whole dataset
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Return type torch.utils.data.Dataset

torchbearer.cv_utils.get_train_valid_sets (x, y, validation_data, validation_split, shuf-
fle=True)
Generate validation and training datasets from whole dataset tensors

Parameters
* x (torch. Tensor) — Data tensor for dataset
* y(torch. Tensor)— Label tensor for dataset

* validation_data ((torch.Tensor, torch.Tensor)) — Optional validation
data (x_val, y_val) to be used instead of splitting x and y tensors

* validation_split (float) - Fraction of dataset to be used for validation

* shuffle (bool) - If True randomize tensor order before splitting else do not randomize
Returns Training and validation datasets
Return type tuple

torchbearer.cv_utils.train_valid_splitter (x,y, split, shuffle=True)
Generate training and validation tensors from whole dataset data and label tensors

Parameters
* x (torch. Tensor) — Data tensor for whole dataset
* y(torch. Tensor) — Label tensor for whole dataset
e split (float) - Fraction of dataset to be used for validation
* shuffle (bool) - If True randomize tensor order before splitting else do not randomize

Returns Training and validation tensors (training data, training labels, validation data, validation
labels)

Return type tuple
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CHAPTER /

torchbearer.callbacks

class torchbearer.callbacks.callbacks.Callback
Base callback class.

Note: All callbacks should override this class.

on_backward (state)
Perform some action with the given state as context after backward has been called on the loss.

Parameters state (dict [str, any])— The current state dict of the Model.

on_criterion (state)
Perform some action with the given state as context after the criterion has been evaluated.

Parameters state (dict [str, any])— The current state dict of the Model.

on_criterion_validation (state)
Perform some action with the given state as context after the criterion evaluation has been completed with
the validation data.

Parameters state (dict [str, any])— The current state dict of the Model.

on_end (state)
Perform some action with the given state as context at the end of the model fitting.

Parameters state (dict [str, any])— The current state dict of the Model.

on_end_epoch (state)
Perform some action with the given state as context at the end of each epoch.

Parameters state (dict [str, any])— The current state dict of the Model.

on_end_training (state)
Perform some action with the given state as context after the training loop has completed.

Parameters state (dict [str, any])— The current state dict of the Model.
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on_end_validation (state)
Perform some action with the given state as context at the end of the validation loop.

Parameters state (dict [str, any])— The current state dict of the Model.

on_forward (state)
Perform some action with the given state as context after the forward pass (model output) has been com-
pleted.

Parameters state (dict [str, any])— The current state dict of the Model.

on_forward validation (state)
Perform some action with the given state as context after the forward pass (model output) has been com-
pleted with the validation data.

Parameters state (dict [str, any])— The current state dict of the Model.

on_sample (sfate)
Perform some action with the given state as context after data has been sampled from the generator.

Parameters state (dict [str, any])— The current state dict of the Model.

on_sample_validation (sfate)
Perform some action with the given state as context after data has been sampled from the validation gen-
erator.

Parameters state (dict [str, any])— The current state dict of the Model.

on_start (state)
Perform some action with the given state as context at the start of a model fit.

Parameters state (dict [str, any]) - The current state dict of the Model.

on_start_epoch (siate)
Perform some action with the given state as context at the start of each epoch.

Parameters state (dict [str, any])— The current state dict of the Model.

on_start_training (state)
Perform some action with the given state as context at the start of the training loop.

Parameters state (dict [str, any])— The current state dict of the Model.

on_start_validation (state)
Perform some action with the given state as context at the start of the validation loop.

Parameters state (dict [str, any])— The current state dict of the Model.

on_step_training (state)
Perform some action with the given state as context after step has been called on the optimiser.

Parameters state (dict [str, any]) - The current state dict of the Model.

on_step_validation (state)
Perform some action with the given state as context at the end of each validation step.

Parameters state (dict [str, any])— The current state dict of the Model.

class torchbearer.callbacks.callbacks.CallbackList (callback_list)
The CallbackList class is a wrapper for a list of callbacks which acts as a single callback.

on_backward (state)
Call on_backward on each callback in turn with the given state.

Parameters state (dict [str, any]) - The current state dict of the Model.
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on_criterion (state)
Call on_criterion on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Model.

on_criterion_validation (state)
Call on_criterion_validation on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Model.

on_end (state)
Call on_end on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Model.

on_end_epoch (state)
Call on_end_epoch on each callback in turn with the given state.

Parameters state (dict [str, any]) - The current state dict of the Model.

on_end_training (sfate)
Call on_end_training on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Model.

on_end validation (state)
Call on_end_validation on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Model.

on_forward (state)
Call on_forward on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Model.

on_forward validation (state)
Call on_forward_validation on each callback in turn with the given state.

Parameters state (dict [str, any]) - The current state dict of the Model.

on_sample (sfate)
Call on_sample on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Model.

on_sample_validation (sfate)
Call on_sample_validation on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Model.

on_start (state)
Call on_start on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Model.

on_start_epoch (state)
Call on_start_epoch on each callback in turn with the given state.

Parameters state (dict [str, any]) - The current state dict of the Model.

on_start_training (state)
Call on_start_training on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Model.

on_start_validation (state)
Call on_start_validation on each callback in turn with the given state.
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Parameters state (dict [str, any])— The current state dict of the Model.

on_step_training (state)
Call on_step_training on each callback in turn with the given state.

Parameters state (dict [str, any]) - The current state dict of the Model.

on_step_validation (state)
Call on_step_validation on each callback in turn with the given state.

Parameters state (dict [str, any])— The current state dict of the Model.

7.1 Model Checkpointers

class torchbearer.callbacks.checkpointers.Best (filepath="model.{epoch:02d}-
{val_loss:.2f}.pt’,  monitor="val_loss’,
mode="auto’, period=1, min_delta=0,
pickle_module=<MagicMock
name="mock.pickle’
id="140274768857240">,
pickle_protocol=<MagicMock
name="mock. DEFAULT PROTOCOL’

id="140274768878112">)
Model checkpointer which saves the best model according to a metric.

on_end_epoch (model_state)
Perform some action with the given state as context at the end of each epoch.

Parameters state (dict [str, any])— The current state dict of the Model.

on_start (state)
Perform some action with the given state as context at the start of a model fit.

Parameters state (dict [str, any]) - The current state dict of the Model.

class torchbearer.callbacks.checkpointers.Interval (filepath="model.{epoch:02d}-
{val_loss:.2f}.pt’, period=1,
pickle_module=<MagicMock
name="mock.pickle’
id="140274769271160°>,
pickle_protocol=<MagicMock
name="mock. DEFAULT _PROTOCOL’

id="140274768920024°>)
Model checkpointer which saves the model every given number of epochs.

on_end_epoch (model_state)
Perform some action with the given state as context at the end of each epoch.

Parameters state (dict [str, any])— The current state dict of the Model.

torchbearer.callbacks.checkpointers.ModelCheckpoint (filepath="model.{epoch:02d}-

{val_loss:.2f}.pt’,
monitor="val_loss’,
save_best_only=False,
mode="auto’, period=1,
min_delta=0)

Save the model after every epoch. filepath can contain named formatting options, which will be filled any

values from state. For example: if filepath is weights.{epoch:02d}-{val_loss:.2f}, then the model checkpoints
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will be saved with the epoch number and the validation loss in the filename. The torch model will be saved to
filename.pt and the torchbearermodel state will be saved to filename.torchbearer.

Parameters

filepath (str)— Path to save the model file
monitor (str)— Quantity to monitor

save_best_only (bool) — If save_best_only=True, the latest best model according to
the quantity monitored will not be overwritten

mode (str)— One of {auto, min, max}. If save_best_only=True, the decision to overwrite
the current save file is made based on either the maximization or the minimization of the
monitored quantity. For val_acc, this should be max, for val_loss this should be min, etc. In
auto mode, the direction is automatically inferred from the name of the monitored quantity.

period (int) — Interval (number of epochs) between checkpoints

min_delta (float) — If save_best_only=True, this is the minimum improvement re-
quired to trigger a save

class torchbearer.callbacks.checkpointers.MostRecent (filepath="model.{epoch:02d}-

{val_loss:.2f}.pt’,
pickle_module=<MagicMock
name="mock.pickle’
id="140274768819312°>,
pickle_protocol=<MagicMock
name="mock. DEFAULT_PROTOCOL’
id="140274768840184°>)

Model checkpointer which saves the most recent model.

on_end_epoch (model_state)
Perform some action with the given state as context at the end of each epoch.

Parameters state (dict [str, any])— The current state dict of the Model.

7.2 Logging

class torchbearer.callbacks.csv_logger.CSVLogger (filename, separator=", ,

batch_granularity=False,
write_header=True, append=False)

Callback to log metrics to a csv file.

on_end (state)
Perform some action with the given state as context at the end of the model fitting.

Parameters state (dict [str, any])— The current state dict of the Model.

on_end_epoch (state)
Perform some action with the given state as context at the end of each epoch.

Parameters state (dict [str, any]) - The current state dict of the Model.

on_step_training (state)
Perform some action with the given state as context after step has been called on the optimiser.

Parameters state (dict [str, any])— The current state dict of the Model.

class torchbearer.callbacks.printer.ConsolePrinter (validation_label_letter="v’)
The ConsolePrinter callback simply outputs the training metrics to the console.

7.2. Logging
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on_end_training (state)
Perform some action with the given state as context after the training loop has completed.

Parameters state (dict [str, any])— The current state dict of the Model.

on_end validation (state)
Perform some action with the given state as context at the end of the validation loop.

Parameters state (dict [str, any])— The current state dict of the Model.

on_step_training (state)
Perform some action with the given state as context after step has been called on the optimiser.

Parameters state (dict [str, any])— The current state dict of the Model.

on_step_validation (state)
Perform some action with the given state as context at the end of each validation step.

Parameters state (dict [str, any]) - The current state dict of the Model.

class torchbearer.callbacks.printer.Tqdm (validation_label_letter="v’)
The Tqdm callback outputs the progress and metrics for training and validation loops to the console using
TQDM.

on_end_training (state)
Update the bar with the terminal training metrics and then close.

Parameters state (dict)— The Model state

on_end_validation (sfate)
Update the bar with the terminal validation metrics and then close.

Parameters state (dict)— The Model state

on_start_training (state)
Initialise the TQDM bar for this training phase.

Parameters state (dict)— The Model state

on_start_vwvalidation (state)
Initialise the TQDM bar for this validation phase.

Parameters state (dict) - The Model state

on_step_training (state)
Update the bar with the metrics from this step.

Parameters state (dict)— The Model state

on_step_validation (state)
Update the bar with the metrics from this step.

Parameters state (dict)— The Model state

class torchbearer.callbacks.timer.TimerCallback

get_timings ()

on_backward (state)
Perform some action with the given state as context after backward has been called on the loss.

Parameters state (dict [str, any])— The current state dict of the Model.

on_criterion (state)
Perform some action with the given state as context after the criterion has been evaluated.
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Parameters state (dict [str, any])— The current state dict of the Model.

on_criterion_validation (state)
Perform some action with the given state as context after the criterion evaluation has been completed with
the validation data.

Parameters state (dict [str, any])— The current state dict of the Model.

on_forward (state)
Perform some action with the given state as context after the forward pass (model output) has been com-
pleted.

Parameters state (dict [str, any])— The current state dict of the Model.

on_forward validation (state)
Perform some action with the given state as context after the forward pass (model output) has been com-
pleted with the validation data.

Parameters state (dict [str, any])— The current state dict of the Model.

on_sample (state)
Perform some action with the given state as context after data has been sampled from the generator.

Parameters state (dict [str, any])— The current state dict of the Model.

on_sample_validation (sfate)
Perform some action with the given state as context after data has been sampled from the validation gen-
erator.

Parameters state (dict [str, any])— The current state dict of the Model.

on_start (state)
Perform some action with the given state as context at the start of a model fit.

Parameters state (dict [str, any])— The current state dict of the Model.

on_start_epoch (state)
Perform some action with the given state as context at the start of each epoch.

Parameters state (dict [str, any])— The current state dict of the Model.

on_start_training (state)
Perform some action with the given state as context at the start of the training loop.

Parameters state (dict [str, any]) - The current state dict of the Model.

on_start_validation (state)
Perform some action with the given state as context at the start of the validation loop.

Parameters state (dict [str, any])— The current state dict of the Model.

on_step_training (state)
Perform some action with the given state as context after step has been called on the optimiser.

Parameters state (dict [str, any])— The current state dict of the Model.

on_step_validation (state)
Perform some action with the given state as context at the end of each validation step.

Parameters state (dict [str, any])— The current state dict of the Model.

update_time (fext, state)
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7.3 Tensorboard

class torchbearer.callbacks.tensor_board.TensorBoard (log_dir="./logs’,
write_graph=True,
write_batch_metrics=False,
batch_step_size=10,
write_epoch_metrics=True,

comment="torchbearer’)
The TensorBoard callback is used to write metric graphs to tensorboard. Requires the TensorboardX library for

python.

on_end (state)
Perform some action with the given state as context at the end of the model fitting.

Parameters state (dict [str, any])— The current state dict of the Model.

on_end_epoch (state)
Perform some action with the given state as context at the end of each epoch.

Parameters state (dict [str, any])— The current state dict of the Model.

on_sample (state)
Perform some action with the given state as context after data has been sampled from the generator.

Parameters state (dict [str, any])— The current state dict of the Model.

on_start (state)
Perform some action with the given state as context at the start of a model fit.

Parameters state (dict [str, any]) - The current state dict of the Model.

on_start_epoch (siate)
Perform some action with the given state as context at the start of each epoch.

Parameters state (dict [str, any])— The current state dict of the Model.

on_step_training (sfate)
Perform some action with the given state as context after step has been called on the optimiser.

Parameters state (dict [str, any])— The current state dict of the Model.

on_step_validation (state)
Perform some action with the given state as context at the end of each validation step.

Parameters state (dict [str, any])— The current state dict of the Model.

class torchbearer.callbacks.tensor_board.TensorBoardImages (log_dir="/logs’, com-

ment="torchbearer’,
name="Image’,
key="y_pred’,
write_each_epoch=True,
num_images=16,
nrow=38, padding=2,
normalize=False,
range=None,
scale_each=False,
pad_value=0)

The TensorBoardImages callback will write a selection of images from the validation pass to tensorboard using

the TensorboardX library and torchvision.utils.make_grid

on_end (state)
Perform some action with the given state as context at the end of the model fitting.
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Parameters state (dict [str, any])— The current state dict of the Model.

on_end_epoch (state)
Perform some action with the given state as context at the end of each epoch.

Parameters state (dict [str, any]) - The current state dict of the Model.

on_start (state)
Perform some action with the given state as context at the start of a model fit.

Parameters state (dict [str, any])— The current state dict of the Model.

on_step_validation (sfate)
Perform some action with the given state as context at the end of each validation step.

Parameters state (dict [str, any])— The current state dict of the Model.

class torchbearer.callbacks.tensor_board.TensorBoardProjector (log_dir="/logs’,

com-
ment="torchbearer’,
num_images=100,
avg_pool_size=1,
avg_data_channels=True,
write_data=True,
write_features=True,
fea-
tures_key="y_pred’)

The TensorBoardProjector callback is used to write images from the validation pass to Tensorboard using the

TensorboardX library.

on_end (state)
Perform some action with the given state as context at the end of the model fitting.

Parameters state (dict [str, any])— The current state dict of the Model.

on_end_epoch (state)
Perform some action with the given state as context at the end of each epoch.

Parameters state (dict [str, any])— The current state dict of the Model.

on_start (state)
Perform some action with the given state as context at the start of a model fit.

Parameters state (dict [str, any])— The current state dict of the Model.

on_step_validation (state)
Perform some action with the given state as context at the end of each validation step.

Parameters state (dict [str, any])— The current state dict of the Model.

7.4 Early Stopping

class torchbearer.callbacks.early_stopping.EarlyStopping (monitor="val_loss’,
min_delta=0, pa-
tience=0, verbose=0,

mode="auto’)
Callback to stop training when a monitored quantity has stopped improving.

on_end (state)
Perform some action with the given state as context at the end of the model fitting.
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Parameters state (dict [str, any])— The current state dict of the Model.

on_end_epoch (state)
Perform some action with the given state as context at the end of each epoch.

Parameters state (dict [str, any]) - The current state dict of the Model.

on_start (state)
Perform some action with the given state as context at the start of a model fit.

Parameters state (dict [str, any])— The current state dict of the Model.

class torchbearer.callbacks.terminate_on_nan.TerminateOnNaN (monitor="running_loss’)
Callback that terminates training when the given metric is nan or inf.

on_end_epoch (state)
Perform some action with the given state as context at the end of each epoch.

Parameters state (dict [str, any]) - The current state dict of the Model.

on_step_training (state)
Perform some action with the given state as context after step has been called on the optimiser.

Parameters state (dict [str, any])— The current state dict of the Model.

on_step_validation (sfate)
Perform some action with the given state as context at the end of each validation step.

Parameters state (dict [str, any])— The current state dict of the Model.

7.5 Gradient Clipping

class torchbearer.callbacks.gradient_clipping.GradientClipping (clip_value,
params=None)

k]

GradientClipping callback, uses ‘torch.nn.utils.clip_grad_value_

on_backward (state)
Between the backward pass (which computes the gradients) and the step call (which updates the parame-
ters), clip the gradient.

Parameters state (dict)— The Model state

on_start (state)
If params is None then retrieve from the model.

Parameters state (dict) - The Model state

class torchbearer.callbacks.gradient_clipping.GradientNormClipping (max_norm,
norm_type=2,
params=None)

bl

GradientNormClipping callback, uses ‘torch.nn.utils.clip_grad_norm_

on_backward (state)
Between the backward pass (which computes the gradients) and the step call (which updates the parame-
ters), clip the gradient.

Parameters state (dict)— The Model state

on_start (state)
If params is None then retrieve from the model.

Parameters state (dict)— The Model state
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7.6 Learning Rate Schedulers

class torchbearer.callbacks.torch_scheduler.

See: PyTorch CosineAnnealingL.R

class torchbearer.callbacks.torch_scheduler.

See: PyTorch Exponential LR

class torchbearer.callbacks.torch_scheduler.

See: PyTorch LambdalLR

class torchbearer.callbacks.torch_scheduler

See: PyTorch MultiStepLR

class torchbearer.callbacks.torch_scheduler.

CosineAnnealingLR (7T_max,
eta_min=0,
last_epoch=-1,
step_on_batch=False)

ExponentialLR (gamma, last_epoch=-1,
step_on_batch=False)

LambdalLR (Ir_lambda, last_epoch=-1,
step_on_batch=False)

.MultiStepLR (milestones, gamma=0.l,

last_epoch=-1,
step_on_batch=False)

ReduceLROnPlateau (monitor="val_loss’,
mode="min’,
factor=0.1,
patience=10, ver-
bose=Fulse,
thresh-
0ld=0.0001,
thresh-
old_mode="rel’,
cooldown=0,
min_Ir=0,
eps=1e-08,
step_on_batch=False)

Parameters monitor (str)— The quantity to monitor. (Default value = ‘val_loss’)

See: PyTorch ReduceL.ROnPlateau

class torchbearer.callbacks.torch_scheduler.

See: PyTorch StepLR

class torchbearer.callbacks.torch_scheduler.

on_end_epoch (state)

SteplLR (step_size, gamma=0.1,
last_epoch=-1,
step_on_batch=False)

TorchScheduler (scheduler_builder,
monitor=None,
step_on_batch=False)

Perform some action with the given state as context at the end of each epoch.

Parameters state (dict [str, any]) - The current state dict of the Model.

on_sample (sfate)

Perform some action with the given state as context after data has been sampled from the generator.

Parameters state (dict [str, any])— The current state dict of the Model.
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on_start (state)
Perform some action with the given state as context at the start of a model fit.

Parameters state (dict [str, any])— The current state dict of the Model.

on_start_training (state)
Perform some action with the given state as context at the start of the training loop.

Parameters state (dict [str, any])— The current state dict of the Model.

on_step_training (sfate)
Perform some action with the given state as context after step has been called on the optimiser.

Parameters state (dict [str, any])— The current state dict of the Model.

7.7 Weight Decay

class torchbearer.callbacks.weight_decay.LlWeightDecay (rate=0.0005,

params=None)
WeightDecay callback which uses an L1 norm

class torchbearer.callbacks.weight_decay.L2WeightDecay (rate=0.0005,

params=None)
WeightDecay callback which uses an L2 norm

class torchbearer.callbacks.weight_decay.WeightDecay (rate=0.0005, p=2,

params=None)
Callback which adds a weight decay term to the loss for the given parameters.

on_criterion (state)
Calculate the decay term and add to state[ ‘loss’].

Parameters state (dict)— The Model state

on_start (state)
Retrieve params from state[ ‘model’] if required.

Parameters state (dict) - The Model state

7.8 Decorators

torchbearer.callbacks.decorators.add to_loss (func)
The add_to_loss () decorator is used to initialise a Callback with the value returned from func being
added to the loss

Parameters func (function)— The function(state) to decorate
Returns Initialised callback which adds the returned value from func to the loss
Return type Callback

torchbearer.callbacks.decorators.on_backward (func)
The on_backward () decorator is used to initialise a Callback with on_backward () calling the deco-
rated function

Parameters func (function)— The function(state) to decorate
Returns Initialised callback with Callback.on_backward () calling func

Return type Callback
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torchbearer.callbacks.decorators.on_criterion (func)
The on_criterion () decorator is used to initialise a Callback with on_criterion () calling the
decorated function

Parameters func (function)— The function(state) to decorate
Returns Initialised callback with Callback.on_criterion () calling func
Return type Callback

torchbearer.callbacks.decorators.on_criterion_validation (func)
The on criterion validation() decorator is used to initialise a Callback with
on_criterion_validation () calling the decorated function

Parameters func (function)— The function(state) to decorate
Returns Initialised callback with Callback.on criterion validation () calling func
Return type Callback

torchbearer.callbacks.decorators.on_end (func)
The on_end () decorator is used to initialise a Callback with on_end () calling the decorated function

Parameters func (function)— The function(state) to decorate
Returns Initialised callback with Callback.on_end () calling func
Return type Callback

torchbearer.callbacks.decorators.on_end_epoch (func)
The on_end _epoch () decorator is used to initialise a Callback with on_end _epoch () calling the
decorated function

Parameters func (function) - The function(state) to decorate
Returns Initialised callback with Callback.on_end epoch () calling func
Return type Callback

torchbearer.callbacks.decorators.on_end_training (func)
The on_end _training () decorator is used to initialise a Callback with on_end_training () calling
the decorated function

Parameters func (function)— The function(state) to decorate
Returns Initialised callback with Callback.on_end_training () calling func
Return type Callback

torchbearer.callbacks.decorators.on_end_validation (func)
The on_end validation () decorator is used to initialise a Callback with on_end validation ()
calling the decorated function

Parameters func (function) - The function(state) to decorate
Returns Initialised callback with Callback.on_end validation () calling func
Return type Callback

torchbearer.callbacks.decorators.on_forward (func)
The on_forward () decorator is used to initialise a Callback with on_forward () calling the decorated
function

Parameters func (function)— The function(state) to decorate

Returns Initialised callback with Callback.on_forward () calling func
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Return type Callback

torchbearer.callbacks.decorators.on_forward_validation (func)
The on_ forward validation() decorator is used to initialise a Callback with
on_forward_validation () calling the decorated function

Parameters func (function) - The function(state) to decorate
Returns Initialised callback with Callback.on_ forward validation () calling func
Return type Callback

torchbearer.callbacks.decorators.on_sample (func)
The on_sample () decorator is used to initialise a Callback with on_sample () calling the decorated
function

Parameters func (function)— The function(state) to decorate
Returns Initialised callback with Callback.on_sample () calling func
Return type Callback

torchbearer.callbacks.decorators.on_sample_validation (func)
The on _sample validation() decorator is wused to initialise a Callback with
on_sample_validation () calling the decorated function

Parameters func (function) - The function(state) to decorate
Returns Initialised callback with Callback.on_sample_validation () calling func
Return type Callback

torchbearer.callbacks.decorators.on_start (func)
The on_start () decorator is used to initialise a Callback with on_start () calling the decorated func-
tion

Parameters func (function)— The function(state) to decorate
Returns Initialised callback with on_start () calling func
Return type Callback

torchbearer.callbacks.decorators.on_start_epoch (func)
The on_start_epoch () decorator is used to initialise a Callback with on_start_epoch () calling
the decorated function

Parameters func (function) - The function(state) to decorate
Returns Initialised callback with on_start_epoch () calling func
Return type Callback

torchbearer.callbacks.decorators.on_start_training (func)
The on_start_training () decorator is used to initialise a Callback with on_start_training/()
calling the decorated function

Parameters func (function)— The function(state) to decorate
Returns Initialised callback with Callback.on_start_training () calling func
Return type Callback

torchbearer.callbacks.decorators.on_start_validation (func)
The on start_validation() decorator is wused to initialise a Callback with
on_start_validation () calling the decorated function

Parameters func (function) - The function(state) to decorate
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Returns Initialised callback with Callback.on_start_validation () calling func
Return type Callback

torchbearer.callbacks.decorators.on_step_training (func)
The on_step_training () decorator is used to initialise a Callback with on_step training/()
calling the decorated function

Parameters func (function)— The function(state) to decorate
Returns Initialised callback with Callback.on_step_training () calling func
Return type Callback

torchbearer.callbacks.decorators.on_step_validation (func)
The on_step _validation()  decorator is used to initialise a Callback  with
on_step_validation () calling the decorated function

Parameters func (function)— The function(state) to decorate
Returns Initialised callback with Callback.on_step _validation () calling func

Return type Callback
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CHAPTER 8

torchbearer.metrics

8.1 Base Classes

The base metric classes exist to enable complex data flow requirements between metrics. All metrics are either
instances of Metric or MetricFactory. These can then be collected in a MetricList or a MetricTree.
The MetricList simply aggregates calls from a list of metrics, whereas the Met ricTree will pass data from its
root metric to each child and collect the outputs. This enables complex running metrics and statistics, without needing
to compute the underlying values more than once. Typically, constructions of this kind should be handled using the
decorator API.

class torchbearer.metrics.metrics.AdvancedMetric (name)
The AdvancedMet ric class is a metric which provides different process methods for training and validation.
This enables running metrics which do not output intermediate steps during validation.

Parameters name (str)— The name of the metric.

eval ()
Put the metric in eval mode.

process (*args)
Depending on the current mode, return the result of either ‘process_train’ or ‘process_validate’.

Parameters state (dict)— The current state dict of the Mode 1.
Returns The metric value.

process_final (*args)
Depending on the current mode, return the result of either ‘process_final_train’ or ‘process_final_validate’.

Parameters state (dict)— The current state dict of the Mode 1.
Returns The final metric value.

process_final_ train (*args)
Process the given state and return the final metric value for a training iteration.

Parameters state — The current state dict of the Mode.
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Returns The final metric value for a training iteration.

process_final validate (*args)
Process the given state and return the final metric value for a validation iteration.

Parameters state (dict)— The current state dict of the Mode 1.
Returns The final metric value for a validation iteration.

process_train (*args)
Process the given state and return the metric value for a training iteration.

Parameters state — The current state dict of the Mode .
Returns The metric value for a training iteration.

process_validate (*args)
Process the given state and return the metric value for a validation iteration.

Parameters state — The current state dict of the Mode 1.
Returns The metric value for a validation iteration.

train ()
Put the metric in train mode.

class torchbearer.metrics.metrics.Metric (name)
Base metric class. Process will be called on each batch, process-final at the end of each epoch. The metric
contract allows for metrics to take any args but not kwargs. The initial metric call will be given state, however,
subsequent metrics can pass any values desired.

Note: All metrics must extend this class.

Parameters name (str)— The name of the metric
eval ()
Put the metric in eval mode during model validation.

process ( *args)
Process the state and update the metric for one iteration.

Parameters args — Arguments given to the metric. If this is a root level metric, will be given
state

Returns None, or the value of the metric for this batch

process_final (*args)
Process the terminal state and output the final value of the metric.

Parameters args — Arguments given to the metric. If this is a root level metric, will be given
state

Returns None or the value of the metric for this epoch

reset (state)
Reset the metric, called before the start of an epoch.

Parameters state — The current state dict of the Mode 1.

train ()
Put the metric in train mode during model training.
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class torchbearer.metrics.metrics.MetricFactory
A simple implementation of a factory pattern. Used to enable construction of complex metrics using decorators.

build()
Build and return a usable Met ri c instance.

Returns The constructed Metric

class torchbearer.metrics.metrics.MetricList (metric_list)
The MetricList classis a wrapper for a list of metrics which acts as a single metric and produces a dictionary
of outputs.

Parameters metric_list (l1ist) — The list of metrics to be wrapped. If the list contains a
MetricList, this will be unwrapped. Any strings in the list will be retrieved from met-
rics. DEFAULT_METRICS.

eval ()
Put each metric in eval mode

process (state)
Process each metric an wrap in a dictionary which maps metric names to values.

Parameters state — The current state dict of the Mode 1.
Returns dict[str,any] — A dictionary which maps metric names to values.

process_final (state)
Process each metric an wrap in a dictionary which maps metric names to values.

Parameters state — The current state dict of the Mode 1.
Returns dict[str,any] — A dictionary which maps metric names to values.

reset (state)
Reset each metric with the given state.

Parameters state — The current state dict of the Mode 1.

train ()
Put each metric in train mode.

class torchbearer.metrics.metrics.MetricTree (metric)
A tree structure which has a node Met ric and some children. Upon execution, the node is called with the input
and its output is passed to each of the children. A dict is updated with the results.

Parameters metric (Metric)— The metric to act as the root node of the tree / subtree

add_child (child)
Add a child to this node of the tree

Parameters child (Metric) - The child to add
Returns None

eval ()
Put the metric in eval mode during model validation.

process ( *args)
Process this node and then pass the output to each child.

Returns A dict containing all results from the children

process_final (*args)
Process this node and then pass the output to each child.
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Returns A dict containing all results from the children

reset (state)
Reset the metric, called before the start of an epoch.

Parameters state — The current state dict of the Mode 1.

train ()
Put the metric in train mode during model training.

8.2 Decorators - The Decorator API

The decorator API is the core way to interact with metrics in torchbearer. All of the classes and functionality handled
here can be reproduced by manually interacting with the classes if necessary. Broadly speaking, the decorator API is
used to construct a Met ricFactory which will build a Met ricTree that handles data flow between instances of
Mean, RunningMean, Std etc.

torchbearer.metrics.decorators.default_for_key (key)
The default_for_key () decorator will register the given metric in the global metric dict (met-
rics. DEFAULT_METRICS) so that it can be referenced by name in instances of MetricList such as in the
list given to the torchbearer.Model.

Example:

@default_for_key('acc')
class CategoricalAccuracy (metrics.BatchLambda) :

Parameters key (str)— The key to use when referencing the metric

torchbearer.metrics.decorators.lambda_metric (name, on_epoch=False)
The Iambda_metric () decorator is used to convert a lambda function y_pred, y_true into a Metric in-
stance. In fact it return a Met ricFactory which is used to build a Met ric. This can make things compli-
cated as in the following example:

@metrics.lambda_metric ('my_metric')
def my_metric(y_pred, y_true):
# Calculate some metric

model = Model (metrics=[my_metric()]) # Note we have to call "my _metric  in order,
—to instantiate the class

Parameters
* name — The name of the metric (e.g. ‘loss’)

* on_epoch — If True the metric will be an instance of EpochLambda instead of
BatchLambda

Returns A decorator which replaces a function with a Met ricFactory
torchbearer.metrics.decorators.mean (clazz)
The mean () decorator is used to add a Mean to the Met ricTree which will will output a mean value at the

end of each epoch. At build time, if the inner class is not a Met ricTree, one will be created. The Mean will
also be wrapped in a ToD1ict for simplicity.

Example:
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>>> import torch
>>> from torchbearer import metrics

>>> (@metrics.mean
@metrics.lambda_metric('my_metric')
def my_metric(y_pred, y_true):
return y_pred + y_true

>>> metric = my_metric().build()

>>> metric.reset ({})

>>> metric.process ({'y_pred':torch.Tensor ([2]), 'y_true':torch.Tensor([2])}) # 4
{1

>>> metric.process ({'y_pred':torch.Tensor ([3]), 'y_true':torch.Tensor([3])}) # 6
{}

>>> metric.process ({'y_pred':torch.Tensor ([4]), 'y _true':torch.Tensor ([4])}) # 8
{}

>>> metric.process_final ()

{'my_metric': 6.0}

Parameters clazz — The class to decorate

Returns A MetricFactory which can be instantiated and built to append a Mean to the
MetricTree

torchbearer.metrics.decorators.running_mean (clazz=None, batch_size=50, step_size=10)
The running_mean () decorator is used to add a RunningMean to the Met ricTree. As with the other
decorators, a MetricFactory is created which will do this upon the call to MetricFactory.build().
If the inner class is not / does not build a Met ricTree then one will be created. The RunningMean will be
wrapped in a ToDict (with ‘running_’ prepended to the name) for simplicity.

Note: The decorator function does not need to be called if not desired, both: @running_mean and @run-
ning_mean() are acceptable.

Example:

>>> import torch
>>> from torchbearer import metrics

>>> @metrics.running_mean (step_size=2) # Update every 2 steps
@metrics.lambda_metric('my_metric')
def my_metric(y_pred, y_true):
return y_pred + y_true

>>> metric = my_metric().build()

>>> metric.reset ({})

>>> metric.process ({'y_pred':torch.Tensor ([2]), 'y_true':torch.Tensor([2])}) # 4
{'"running_my_metric': 4.0}

>>> metric.process ({'y_pred':torch.Tensor([3]), 'y_true':torch.Tensor([3])}) # 6
{'running_my_metric': 4.0}

>>> metric.process ({'y_pred':torch.Tensor ([4]), 'y_true':torch.Tensor ([4])}) # &,
—triggers update

{'running_my_metric': 6.0}

Parameters
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* clazz — The class to decorate
* batch_size — See RunningMean
* step_size - See RunningMean

Returns decorator or MetricFactory

torchbearer.metrics.decorators.std (clazz)

The std () decorator is used to add a Std to the Met ricTree which will will output a population standard
deviation value at the end of each epoch. At build time, if the inner class is not a Met ricTree, one will be
created. The St d will also be wrapped in a ToDict (with ‘_std’ appended) for simplicity.

Example:

>>> import torch
>>> from torchbearer import metrics

>>> @metrics.std
@metrics.lambda_metric('my_metric')
def my_metric(y_pred, y_true):
return y_pred + y_true

>>> metric = my_metric() .build()

>>> metric.reset ({})

>>> metric.process ({'y_pred':torch.Tensor ([2]), 'y_true':torch.Tensor([2])}) # 4
{}

>>> metric.process ({'y_pred':torch.Tensor([3]), 'y_true':torch.Tensor([3])}) # 6
{}

>>> metric.process ({'y_pred':torch.Tensor([4]), 'yv_true':torch.Tensor([4])}) # 8
{}

>>> ! ' % metric.process_final () ['my_metric_std']

'1.6330"

Parameters clazz — The class to decorate

Returns A MetricFactory which can be instantiated and built to append a Mean to the
MetricTree

torchbearer.metrics.decorators.to_dict (clazz)

The to_dict () decorator is used to wrap either a Metric or MetricFactory instance with a ToDict
instance. The result is that future output will be wrapped in a dict[name, value].

Example:

>>> from torchbearer import metrics

>>> @metrics.lambda_metric('my_metric')
def my_metric(y_pred, y_true):
return y_pred + y_true

>>> my_metric() .build() .process ({'y_pred':4, 'y _true':5})

>>> @metrics.to_dict
@metrics.lambda_metric('my_metric')
def my_metric(y_pred, y_true):
return y_pred + y_true

(continues on next page)
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(continued from previous page)

>>> my_metric() .build() .process ({'y_pred':4, 'y _true':5})
{'my_metric': 9}

Parameters clazz — The class to decorate

Returns A MetricFactory which can be instantiated and built to wrap the given class in a
ToDict

8.3 Metric Wrappers

Metric wrappers are classes which wrap instances of Met ric or, in the case of EpochLambda and Bat chLambda,
functions. Typically, these should not be used directly (although this is entirely possible), but via the decorator
APT.

class torchbearer.metrics.wrappers.BatchLambda (name, metric_function)
A metric which returns the output of the given function on each batch.

Parameters
¢ name (str)— The name of the metric.
* metric_function — A metric function(‘y_pred’, ‘y_true’) to wrap.

process (state)
Return the output of the wrapped function.

Parameters state (dict)—The torchbearer.Model state.
Returns The value of the metric function(‘y_pred’, ‘y_true’).

class torchbearer.metrics.wrappers.EpochLambda (name, metric_function, running=True,

step_size=50)
A metric wrapper which computes the given function for concatenated values of ‘y_true’ and ‘y_pred’ each

epoch. Can be used as a running metric which computes the function for batches of outputs with a given step
size during training.

Parameters
e name (str) - The name of the metric.
* metric_function — The function(‘y_pred’, ‘y_true’) to use as the metric.
* running (bool) — True if this should act as a running metric.
* step_size (int) - Step size to use between calls if running=True.

process_final_train (state)
Evaluate the function with the aggregated outputs.

Parameters state (dict)—-The torchbearer.Model state.
Returns The result of the function.

process_final_ validate (state)
Evaluate the function with the aggregated outputs.

Parameters state (dict)—-The torchbearer.Model state.

Returns The result of the function.
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process_train (state)

Concatenate the ‘y_true’ and ‘y_pred’ from the state along the 0 dimension. If this is a running metric,

evaluates the function every number of steps.
Parameters state (dict)-The torchbearer.Model state.
Returns The current running result.

process_validate (state)
During validation, just concatenate ‘y_true’ and y_pred’.

Parameters state (dict)-The torchbearer.Model state.

reset (state)
Reset the ‘y_true’ and ‘y_pred’ caches.

Parameters state (dict)-The torchbearer.Model state.

class torchbearer.metrics.wrappers.ToDict (metric)

The ToDict class is an AdvancedMet ric which will put output from the inner Met ric in a dict (mapping

metric name to value) before returning. When in eval mode, ‘val_’ will be prepended

Example:

to the metric name.

>>> from torchbearer import metrics
>>> @metrics.lambda_metric('my_metric')
def my_metric(y_pred, y_true):

return y_pred + y_true

>>> metric = metrics.ToDict (my_metric () .build())

>>> metric.process ({'y_pred': 4, 'y_true': 5})
{'my_metric': 9}

>>> metric.eval ()

>>> metric.process ({'y_pred': 4, 'y_true': 5})
{'val_my_metric': 9}

Parameters metric (metrics.Metric)— The Met ric instance to wrap.
eval ()
Put the metric in eval mode.

process_final_train (*args)
Process the given state and return the final metric value for a training iteration.

Parameters state — The current state dict of the Mode.
Returns The final metric value for a training iteration.

process_final_validate (*args)

Process the given state and return the final metric value for a validation iteration.

Parameters state (dict) - The current state dict of the Mode 1.
Returns The final metric value for a validation iteration.

process_train (*args)
Process the given state and return the metric value for a training iteration.

Parameters state — The current state dict of the Model.

Returns The metric value for a training iteration.
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process_validate ( *args)
Process the given state and return the metric value for a validation iteration.

Parameters state — The current state dict of the Mode].
Returns The metric value for a validation iteration.

reset (state)
Reset the metric, called before the start of an epoch.

Parameters state — The current state dict of the Mode].

train()
Put the metric in train mode.

8.4 Metric Aggregators

Aggregators are a special kind of Met ric which takes as input, the output from a previous metric or metrics. As a
result, via a Met ricTree, a series of aggregators can collect statistics such as Mean or Standard Deviation without
needing to compute the underlying metric multiple times. This can, however, make the aggregators complex to use. It
is therefore typically better to use the decorator APT.

class torchbearer.metrics.aggregators.Mean (name)
Metric aggregator which calculates the mean of process outputs between calls to reset.

Parameters name (st r)— The name of this metric.

process (data)
Add the input to the rolling sum.

Parameters data (torch.Tensor) — The output of some previous call to Metric.
process ().

process_final (data)
Compute and return the mean of all metric values since the last call to reset.

Parameters data (torch.Tensor) — The output of some previous call to Metric.
process_final ().

Returns The mean of the metric values since the last call to reset.

reset (state)
Reset the running count and total.

Parameters state (dict) - The model state.

class torchbearer.metrics.aggregators.RunningMean (name, batch_size=50,

step_size=10)
A RunningMet ric which outputs the mean of a sequence of its input over the course of an epoch.

Parameters
* name (str)— The name of this running mean.
* batch_size (int)— The size of the deque to store of previous results.
* step_size (int)— The number of iterations between aggregations.

class torchbearer.metrics.aggregators.RunningMetric (name, batch_size=50,

step_size=10)
A metric which aggregates batches of results and presents a method to periodically process these into a value.
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Note: Running metrics only provide output during training.

Parameters
e name (str) - The name of the metric.
* batch_size (int) - The size of the deque to store of previous results.
* step_size (int) - The number of iterations between aggregations.
process_train (*args)
Add the current metric value to the cache and call ‘_step’ is needed.
Parameters args — The output of some Metric
Returns The current metric value.

reset (state)
Reset the step counter. Does not clear the cache.

Parameters state (dict) - The current model state.

class torchbearer.metrics.aggregators.Std (name)
Metric aggregator which calculates the standard deviation of process outputs between calls to reset.

Parameters name (st r)— The name of this metric.

process (data)
Compute values required for the std from the input.

Parameters data (torch.Tensor) — The output of some previous call to Metric.
process ().

process_final (data)
Compute and return the final standard deviation.

Parameters data (torch.Tensor) — The output of some previous call to Metric.
process_final ().

Returns The standard deviation of each observation since the last reset call.

reset (state)
Reset the statistics to compute the next deviation.

Parameters state (dict)— The model state.

8.5 Base Metrics

Base metrics are the base classes which represent the metrics supplied with torchbearer. The all use the
default_for_ key () decorator so that they can be accessed in the call to torchbearer.Model via the fol-
lowing strings:

e ‘acc’ or ‘accuracy’: The CategoricalAccuracy metric
* ‘loss’: The Loss metric
* ‘epoch’: The Epoch metric

e ‘roc_auc’ or ‘roc_auc_score’: The RocAucScore metric
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class torchbearer.metrics.primitives.CategoricalAccuracy
Categorical accuracy metric. Uses torch.max to determine predictions and compares to targets.

class torchbearer.metrics.primitives.Epoch
Returns the ‘epoch’ from the model state.

process (state)
Process the state and update the metric for one iteration.

Parameters args — Arguments given to the metric. If this is a root level metric, will be given
state

Returns None, or the value of the metric for this batch

process_final (state)
Process the terminal state and output the final value of the metric.

Parameters args — Arguments given to the metric. If this is a root level metric, will be given
state

Returns None or the value of the metric for this epoch

class torchbearer.metrics.primitives.Loss
Simply returns the ‘loss’ value from the model state.

process (state)
Process the state and update the metric for one iteration.

Parameters args — Arguments given to the metric. If this is a root level metric, will be given
state

Returns None, or the value of the metric for this batch

8.5. Base Metrics
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